(2012•衢州)長方體的主視圖、俯視圖如圖所示,則其左視圖面積為( 。
分析:根據(jù)物體的主視圖與俯視圖可以得出,物體的長與高以及長與寬,進(jìn)而得出左視圖面積=寬×高.
解答:解:由主視圖易得高為1,由俯視圖易得寬為3.
則左視圖面積=1×3=3,
故選:A.
點評:此題主要考查了由三視圖判斷幾何體的形狀,利用主視圖確定物體的長與高;俯視圖確定物體的長與寬是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州二模)如圖,平面直角坐標(biāo)系中,直線y=
3
3
x
與直線x=3交于點P,點A是直線x=3與x軸的交點,將直線OP繞著點O、直線AP繞著點A以相同的速度逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)過程中,兩條直線交點始終為P,當(dāng)直線OP與y軸正半軸重合時,兩條直線同時停止轉(zhuǎn)動.
(1)當(dāng)旋轉(zhuǎn)角度為15°時,點P坐標(biāo)為
3+
3
2
,
3+
3
2
3+
3
2
,
3+
3
2
;
(2)整個旋轉(zhuǎn)過程中,點P所經(jīng)過的路線長為
2
3
3
π
2
3
3
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州二模)已知:拋物線y1=x2以點C為頂點且過點B,拋物線y2=a2x2+b2x+c2以點B為頂點且過點C,分別過點B、C作x軸的平行線,交拋物線y1=x2y2=a2x2+b2x+c2于點A、D,且AB=AC.
(1)如圖1,①求證:△ABC為正三角形;②求點A的坐標(biāo);
(2)①如圖2,若將拋物線“y1=x2”改為“y1=x2+1”,其他條件不變,求CD的長;
②如圖3,若將拋物線“y1=x2”改為“y1=3x2+b1x+c1”,其他條件不變,求a2的值;
(3)若將拋物線“y1=x2”改為拋物線“y1=a1x2+b1x+c1”,其他條件不變,直接寫出b1關(guān)于b2的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州二模)在平面直角坐標(biāo)系中,點A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上一動點,連接AB并延長AB至點D,使DB=AB,連接OB、DC相交于E,過E作OA的垂線,垂足為F,連接AE.
(1)如圖,當(dāng)∠AOB=15°時,①求弧AB的長; ②求△OAB的面積;
(2)在點B運動過程中,
①若以點E、C、F為頂點的三角形與△AOB相似,請求出此時點F的坐標(biāo);
②若以點E、C、F為頂點的三角形與△ABE相似,請直接寫出此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州)課本中,把長與寬之比為
2
的矩形紙片稱為標(biāo)準(zhǔn)紙.請思考解決下列問題:
(1)將一張標(biāo)準(zhǔn)紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標(biāo)準(zhǔn)紙.請給予證明.
(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進(jìn)行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.
請你探究:矩形紙片ABCD是否是一張標(biāo)準(zhǔn)紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標(biāo)準(zhǔn)紙按如圖3一次又一次對開后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙ABCD,AB=1,BC=
2
,問第5次對開后所得標(biāo)準(zhǔn)紙的周長是多少?探索直接寫出第2012次對開后所得標(biāo)準(zhǔn)紙的周長.

查看答案和解析>>

同步練習(xí)冊答案