【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ,CP,若AQ⊥CP,求t的值.
【答案】
(1)解:根據(jù)勾股定理得:BA=
分兩種情況討論:
①當(dāng)△BPQ∽△BAC時(shí), ,
∵BP=5t,QC=4t,AB=10,BC=8,
∴ ,解得,t=1,
②當(dāng)△BPQ∽△BCA時(shí), ,
∴ ,解得,t= ;
∴t=1或 時(shí),△BPQ∽△BCA
(2)解:過(guò)P作PM⊥BC于點(diǎn)M,AQ,CP交于點(diǎn)N,如圖所示:
則PB=5t,PM=3t,MC=8﹣4t,
∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,
∴∠NAC=∠PCM,
∵∠ACQ=∠PMC,
∴△ACQ∽△CMP,
∴ ,
∴ ,解得t= .
【解析】(1)分兩種情況:①當(dāng)△BPQ∽△BAC時(shí),BP:BA=BQ:BC;當(dāng)△BPQ∽△BCA時(shí),BP:BC=BQ:BA,再根據(jù)BP=5t,QC=4t,AB=10cm,BC=8cm,代入計(jì)算即可;(2)過(guò)P作PM⊥BC于點(diǎn)M,AQ,CP交于點(diǎn)N,則有PB=5t,PM=3t,MC=8﹣4t,根據(jù)△ACQ∽△CMP,得出AC:CM=CQ:MP,代入計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E,F(xiàn)是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經(jīng)過(guò)點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y= x2交于點(diǎn)Q,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,BC∥x軸,點(diǎn)A,C在反比例函數(shù)y= (x>0)的圖象上,點(diǎn)B在反比例函數(shù)y= (x>0)的圖象上,則△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a=0且b=0.
運(yùn)用上述知識(shí),解決下列問(wèn)題:
(1)如果(a-2)+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=x2﹣(m﹣2)x+m的圖象過(guò)點(diǎn)(﹣1,15),設(shè)其圖象與x軸交于點(diǎn)A,B(A在B的左側(cè)),點(diǎn)C在圖象上,且S△ABC=1,求:
(1)求m;
(2)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(3)求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015攀枝花,第15題,4分)如圖,在邊長(zhǎng)為2的等邊△ABC中,D為BC的中點(diǎn),E是AC邊上一點(diǎn),則BE+DE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,底面積為30cm2的空?qǐng)A柱形容器內(nèi)水平放置著由兩個(gè)實(shí)心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過(guò)程中,水面高度h(cm)與注水時(shí)間t(s)之間的關(guān)系如圖②所示.
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)圓柱形容器的高為cm,勻速注水的水流速度為cm3/s;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱的高和底面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com