【題目】在平面直角坐標(biāo)系xOy中,拋物線My=-x2+2bx+c與直線ly=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2

1)請用含有b的代數(shù)式表示c: ;

2)若點(diǎn)B在直線l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b5).

①若拋物線M還過點(diǎn)B,直接寫出該拋物線的解析式;

②若拋物線M與線段BC恰有一個交點(diǎn),結(jié)合函數(shù)圖象,直接寫出b的取值范圍.

【答案】1;(2)①;②.

【解析】

1)將A點(diǎn)橫坐標(biāo),代入直線ly=9x+14得到A點(diǎn)的坐標(biāo),再代入到拋物線中,即可求解;

2)①將B點(diǎn)橫坐標(biāo),代入直線ly=9x+14得到B點(diǎn)的坐標(biāo),再代入到拋物線中,可求出拋物線的解析式;

②拋物線的頂點(diǎn)為N),開口向下,Cb,5),B-1,5),要使得拋物線M與線段BC有交點(diǎn),N不在C的下方,即0,則分,或兩種情況討論,結(jié)合圖象求解.

解:(1)∵拋物線My=-x2+2bx+c與直線ly=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2,

A(-2,-4),

代入y=-x2+2bx+c,

故答案為:

2)∵點(diǎn)B在直線ly=9x+14上,且B的橫坐標(biāo)為-1

B-1,5),

①若拋物線My=-x2+2bx+4b還過點(diǎn)B-1,5),

,

b=3,

∴該拋物線的解析式:

②∵的頂點(diǎn)為N),開口向下,

其中Cb,5),B-1,5),

要使得拋物線M與線段BC有交點(diǎn),N不在C的下方,即0,

,或,

當(dāng)時(shí),

結(jié)合函數(shù)圖象,若拋物線M與線段BC恰有一個交點(diǎn),

當(dāng)時(shí),,

;

當(dāng)時(shí),

結(jié)合函數(shù)圖象,若拋物線M與線段BC恰有一個交點(diǎn),

當(dāng)時(shí),,

綜上所述:拋物線M與線段BC恰有一個交點(diǎn)時(shí),.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰有一塊含有30°角的直角三角板,他想只利用量角器來測量較短直角邊的長度,于是他采用如圖的方法,小聰發(fā)現(xiàn)點(diǎn)A處的三角板讀數(shù)為12cm,點(diǎn)B處的量角器的讀數(shù)為74°106°,由此可知三角板的較短直角邊的長度為 cm.(參考數(shù)據(jù):tan37°=075

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長DO到E

使AE∥BC,連接AE。

(1)求證:四邊形ADCE是矩形;

(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;

②若AB=10,則BC= 時(shí),四邊形ADCE是正方形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、圖②均是4×4的正方形網(wǎng)格,每個小正方形的頂點(diǎn)稱為格點(diǎn),四邊形ABCD的頂點(diǎn)均在格點(diǎn)上,僅用無刻度直尺,分別按下列要求畫圖.

1)在圖①中的線段CD上找到一點(diǎn)E,連結(jié)AE,使得AE將四邊形ABCD的面積分成1:2兩部分.

2)在圖②中的四邊形ABCD外部作一條直線l,使得直線l上任意一點(diǎn)與點(diǎn)A、B構(gòu)成三角形的面積是四邊形ABCD面積的.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】容器中有A,BC 3種粒子,若相同種類的兩顆粒子發(fā)生碰撞,則變成一顆B粒子;不同種類的兩顆粒子發(fā)生碰撞,會變成另外一種粒子.例如,一顆A粒子和一顆B粒子發(fā)生碰撞則變成一顆C粒子.現(xiàn)有A粒子10顆,B粒子8顆,C粒子9顆,如果經(jīng)過各種兩兩碰撞后,只剩1顆粒子.給出下列結(jié)論:

①最后一顆粒子可能是A粒子

②最后一顆粒子一定是C粒子

③最后一顆粒子一定不是B粒子

④以上都不正確

其中正確結(jié)論的序號是( )(寫出所有正確結(jié)論的序號)

A.B.②③C.D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項(xiàng)測試:筆試、面試、實(shí)習(xí).學(xué)生的最終成績由筆試面試、實(shí)習(xí)依次按325的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對他們的兩項(xiàng)成績分別進(jìn)行了整理和分析.下面給出了部分信息:

①公司將筆試成績(百分制)分成了四組,分別為A組:60≤x70,B組:70≤x80,C組:80≤x90,D組:90≤x100;并繪制了如下的筆試成績頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:80,81,82,8383,8484,85,8688,88,88,89

②這些大學(xué)生的筆試、面試成績的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:

平均數(shù)

中位數(shù)

眾數(shù)

最高分

筆試成績

81

m

92

97

面試成績

80.5

84

86

92

根據(jù)以上信息,回答下列問題:

1)這批大學(xué)生中筆試成績不低于88分的人數(shù)所占百分比為   

2m   分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績都是83分,那么該同學(xué)成績排名靠前的是   成績,理由是   

3)乙同學(xué)也參加了本次招聘,筆試成績雖不是最高分,但也不錯,分?jǐn)?shù)在D組;面試成績?yōu)?/span>88分,實(shí)習(xí)成績?yōu)?/span>80分由表格中的統(tǒng)計(jì)數(shù)據(jù)可知乙同學(xué)的筆試成績?yōu)?/span>   分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請通過計(jì)算說明,該同學(xué)最終能否被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸、軸相交于、兩點(diǎn),與的圖象相交于、兩點(diǎn),連接、.給出下列結(jié)論:

;④不等式的解集是.

其中正確結(jié)論的序號是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級舉行了中國夢演講比賽活動,學(xué)校團(tuán)委根據(jù)學(xué)生的成績劃分為A,B,C,D四個等級,并繪制了如下兩個不完整的兩種統(tǒng)計(jì)圖.

根據(jù)圖中提供的信息,回答下列問題

1)參加演講比賽的學(xué)生共有   人,并把條形圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中,m   C等級對應(yīng)的扇形的圓心角為   度.

3)學(xué)校準(zhǔn)備從獲得A等級的學(xué)生中隨機(jī)選取2人,參加全市舉辦的演講比賽,請利用列表法或樹狀圖法,求獲得A等級的小明參加市比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB的直徑,為圓弧上的一點(diǎn),,垂足為D,AC平分AB的延長線交直線于點(diǎn)

1)求證:的切線;

2)若B的中點(diǎn),,垂足為點(diǎn),求的長;

3)如圖2,連接OD于點(diǎn),若,求的值.

查看答案和解析>>

同步練習(xí)冊答案