【題目】已知:在平面直角坐標(biāo)系中有兩條直線y=﹣2x+3和y=3x﹣2.
(1)確定這兩條直線交點(diǎn)所在的象限,并說明理由;
(2)求兩直線與坐標(biāo)軸正半軸圍成的四邊形的面積.
【答案】(1)兩直線交點(diǎn)坐標(biāo)為(1,1),在第一象限;(2).
【解析】
(1)聯(lián)立兩直線解析式成方程組,解方程組即可求出交點(diǎn)坐標(biāo),進(jìn)而即可得出交點(diǎn)所在的象限;
(2)令直線y=﹣2x+3與x、y軸分別交于點(diǎn)A、B,直線y=3x﹣2與x、y軸分別交于點(diǎn)C、D,兩直線交點(diǎn)為E,由直線AB、CD的解析式即可求出點(diǎn)A、B、C的坐標(biāo),利用分割圖形求面積法結(jié)合三角形的面積公式即可求出兩直線與坐標(biāo)軸正半軸圍成的四邊形的面積.
(1)聯(lián)立兩直線解析式得:,
解得:,
∴兩直線交點(diǎn)坐標(biāo)為(1,1),在第一象限.
(2)令直線y=﹣2x+3與x、y軸分別交于點(diǎn)A、B,直線y=3x﹣2與x、y軸分別交于點(diǎn)C、D,兩直線交點(diǎn)為E,如圖所示.
令y=﹣2x+3中x=0,則y=3,
∴B(0,3);
令y=﹣2x+3中y=0,則x=,
∴A(,0).
令y=3x﹣2中y=0,則x=,
∴C(,0).
∵E(1,1),
∴S四邊形OCEB=S△AOB﹣S△ACE=OAOB﹣ACyE=××3﹣×(﹣)×1=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①2+3x-5x3是三次四項(xiàng)式;②﹣a一定在原點(diǎn)的左邊.③是分?jǐn)?shù),它是有理數(shù);④有最大的負(fù)整數(shù),沒有最大的正整數(shù);⑤近似數(shù)5.60所表示的準(zhǔn)確數(shù)x的范圍是:5.55≤x<5.65.其中錯誤的個數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,AB=4,點(diǎn)G在BC邊上,BG=3,DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.
(1)求BF和DE的長;
(2)如圖2,連接DF、CE,探究并證明線段DF與CE的數(shù)量關(guān)系與位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于BF長為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長交BC于點(diǎn)E,連接EF.
(1)四邊形ABEF是 ;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點(diǎn)O,若四邊形ABEF的周長為40,BF=10,則AE的長為 ,∠ABC= °.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形OABC中,OA∥BC,∠OAB=90°,O為原點(diǎn),點(diǎn)C的坐標(biāo)為(2,8),點(diǎn)A的坐標(biāo)為(26,0),點(diǎn)D從點(diǎn)B出發(fā),以每秒1個單位長度的速度沿BC向點(diǎn)C運(yùn)動,點(diǎn)E同時(shí)從點(diǎn)O出發(fā),以每秒3個單位長度的速度沿折線OAB運(yùn)動,當(dāng)點(diǎn)E達(dá)到點(diǎn)B時(shí),點(diǎn)D也停止運(yùn)動,從運(yùn)動開始,設(shè)D(E)點(diǎn)運(yùn)動的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),四邊形ABDE是矩形;
(2)當(dāng)t為何值時(shí),DE=CO?
(3)連接AD,記△ADE的面積為S,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動時(shí),折痕的端點(diǎn)P、Q也隨之移動;
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點(diǎn)E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AC⊥BD于C,點(diǎn)E為AC上一點(diǎn),連結(jié)BE、DE,DE的延長線交AB于F,已知DE=AB,∠CAD=45°.
(1)求證:DF⊥AB;
(2)利用圖中陰影部分面積完成勾股定理的證明,已知:如圖,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求證:a2+b2=c2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com