【題目】有一工程需在規(guī)定日期x天內(nèi)完成,如果甲單獨(dú)工作剛好能夠按期完成:如果乙單獨(dú)工作就要超過規(guī)定日期3天.
(1)甲的工作效率為 ,乙的工作效率為 .(用含x的代數(shù)式表示)
(2)若甲、乙合作2天后余下的工程由乙單獨(dú)完成剛好在規(guī)定日期完成,求x的值.
【答案】(1),;(2)規(guī)定的時(shí)間是6天.
【解析】
(1)由“工作效率=工作量÷工作時(shí)間”即可得;
(2)關(guān)鍵描述語為:“由甲、乙兩隊(duì)合作2天,剩下的由乙隊(duì)獨(dú)做,也剛好在規(guī)定日期內(nèi)完成”;本題的等量關(guān)系為:甲工作2天完成的工作量+乙規(guī)定日期完成的工作量=1,把相應(yīng)數(shù)值代入即可求解.
(1)依題意得,甲的工作效率為 ,乙的工作效率為 .
故答案為:,;
(2)依題意得:+=1,
解得 x=6,
經(jīng)檢驗(yàn),x=6是原方程的解且符合實(shí)際意義,
答:規(guī)定的時(shí)間是6天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有以下四個(gè)命題:
①反比例函數(shù)y=,當(dāng)x>0時(shí),y隨x的增大而增大;
②拋物線y=x2﹣2x+2與兩坐標(biāo)軸無交點(diǎn);
③平分弦的直徑垂直于弦,且平分弦所對(duì)的;
④有一個(gè)角相等的兩個(gè)等腰三角形相似.
其中正確命題的個(gè)數(shù)為( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,連接EF,若BF=12,AB=10,則AE的長為( )
A. 16B. 15C. 14D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F為BD所在直線上的兩點(diǎn).若AE=,∠EAF=135°,則以下結(jié)論正確的是( 。
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時(shí),求該不等式的解集;
(2)m取何值時(shí),該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中且,又、為的三等分點(diǎn).
(1)求證;
(2)證明:;
(3)若點(diǎn)為線段上一動(dòng)點(diǎn),連接則使線段的長度為整數(shù)的點(diǎn)的個(gè)數(shù)________.(直接寫答案無需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=AC=AD,∠DAC=∠ABC.
(1)求證:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣x+8與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的函數(shù)解析式是( )
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com