拋物線的圖象經(jīng)過(0,3),(-2,-5)和(1,4)三點,則它的解析式為______.
設拋物線解析式為y=ax2+bx+c,
將(0,3),(-2,-5)和(1,4)三點代入得:
c=3
4a-2b+c=-5
a+b+c=4
,
解得:
a=-1
b=2
c=3

則拋物線解析式為y=-x2+2x+3.
故答案為:y=-x2+2x+3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+4x+3交x軸于A、B兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標為(-1,0).
(1)求拋物線的對稱軸及點A的坐標;
(2)在平面直角坐標系xoy中是否存在點P,與A、B、C三點構成一個平行四邊形?若存在,請寫出點P的坐標;若不存在,請說明理由;
(3)連接CA與拋物線的對稱軸交于點D,在拋物線上是否存在點M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=x2-2x-m(m>0)與y軸交于點C,點C關于拋物線對稱軸的對稱點為點C1
(1)求拋物線的對稱軸及點C、C1的坐標(可用含m的代數(shù)式表示);
(2)如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C、C1、P、Q為頂點的四邊形是平行四邊形,求所有平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點B的坐標為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線ACx軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

世紀廣場中心標志性建筑處有高低不同的各種噴泉,其中一支高度為1米的噴水管,噴水最高點A離地面為3米.此時A點離噴水口水平距離為
1
2
米,在如圖所示直角坐標系中,這支噴泉的函數(shù)關系式是______.(不要求指出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c與x軸相交于兩點A(1,0),B(3,0)與y軸相交于點C(0,3),
(l)求拋物線的函數(shù)關系式;
(2)若點D(4,m)是拋物線y=ax2+bx+c上一點,請求出m的值,并求出此時△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點O為原點,已知點A的坐標為(2,2),點B、C在y軸上,BC=8,AB=AC,直線AB與x軸相交于點D.
(1)求點C、D的坐標;
(2)求圖象經(jīng)過A、C、D三點的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知關于x的二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(3,0),(-2,5).
(1)求這個二次函數(shù)的解析式.
(2)求出此二次函數(shù)的圖象的頂點坐標及其與y軸的交點坐標.
(3)畫出示意圖.

查看答案和解析>>

同步練習冊答案