【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱,已知A, D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)對(duì)稱中心的坐標(biāo);
(2)寫出頂點(diǎn)B, C, B1 , C1的坐標(biāo).
【答案】(0, );B(-2,4)C(-2,2)(2,1)(2,3).
【解析】試題分析:(1)根據(jù)對(duì)稱中心的性質(zhì),可得對(duì)稱中心的坐標(biāo)是D1D的中點(diǎn),據(jù)此解答即可.
(2)首先根據(jù)A,D的坐標(biāo)分別是(0,4),(0,2),求出正方形ABCD與正方形A1B1C1D1的邊長(zhǎng)是多少,然后根據(jù)A,D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2),判斷出頂點(diǎn)B,C,B1,C1的坐標(biāo)各是多少即可.
試題解析:(1)根據(jù)對(duì)稱中心的性質(zhì),可得
對(duì)稱中心的坐標(biāo)是D1D的中點(diǎn),
∵D1,D的坐標(biāo)分別是(0,3),(0,2),
∴對(duì)稱中心的坐標(biāo)是(0,2.5).
(2)∵A,D的坐標(biāo)分別是(0,4),(0,2),
∴正方形ABCD與正方形A1B1C1D1的邊長(zhǎng)都是:4﹣2=2,
∴B,C的坐標(biāo)分別是(﹣2,4),(﹣2,2),
∵A1D1=2,D1的坐標(biāo)是(0,3),
∴A1的坐標(biāo)是(0,1),
∴B1,C1的坐標(biāo)分別是(2,1),(2,3),
綜上,可得頂點(diǎn)B,C,B1,C1的坐標(biāo)分別是(﹣2,4),(﹣2,2),(2,1),(2,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為( )
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,E為AB的中點(diǎn),求證:
(1)AC2=AB·AD;
(2)CE∥AD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐與操作:一般地,如果把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一定角度α(α小于360°)后,能夠與原來的圖形重合,那么這個(gè)圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,α叫做這個(gè)旋轉(zhuǎn)對(duì)稱圖形的一個(gè)旋轉(zhuǎn)角,請(qǐng)根據(jù)上述規(guī)定解答下列問題:
(1)請(qǐng)寫出一個(gè)有一個(gè)旋轉(zhuǎn)角是90°旋轉(zhuǎn)對(duì)稱圖形,這個(gè)圖形可以是_____;
(2)尺規(guī)作圖:在圖中的等邊三角形內(nèi)部作出一個(gè)圖形,使作出的圖形和這個(gè)等邊三角形構(gòu)成的整體既是一個(gè)旋轉(zhuǎn)對(duì)稱圖形又是一個(gè)軸對(duì)稱圖形(作出的圖形用實(shí)線,作圖過程用虛線,保留痕跡,不寫做法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
數(shù)學(xué)課上,老師讓同學(xué)們利用三角形紙片進(jìn)行操作活動(dòng),探究有關(guān)線段之間的關(guān)系.
問題情境:
如圖1,三角形紙片ABC中,∠ACB=90°,AC=BC.將點(diǎn)C放在直線l上,點(diǎn)A,B位于直線l的同側(cè),過點(diǎn)A作AD⊥l于點(diǎn)D.
初步探究:
(1)在圖1的直線l上取點(diǎn)E,使BE=BC,得到圖2.猜想線段CE與AD的數(shù)量關(guān)系,并說明理由;
變式拓展:
(2)小穎又拿了一張三角形紙片MPN繼續(xù)進(jìn)行拼圖操作,其中∠MPN=90°,MP=NP.小穎在圖 1 的基礎(chǔ)上,將三角形紙片MPN的頂點(diǎn)P放在直線l上,點(diǎn)M與點(diǎn)B重合,過點(diǎn)N作NH⊥l于點(diǎn) H.
請(qǐng)從下面 A,B 兩題中任選一題作答,我選擇_____題.
A.如圖3,當(dāng)點(diǎn)N與點(diǎn)M在直線l的異側(cè)時(shí),探究此時(shí)線段CP,AD,NH之間的數(shù)量關(guān)系,并說明理由.
B.如圖4,當(dāng)點(diǎn)N與點(diǎn)M在直線l的同側(cè),且點(diǎn)P在線段CD的中點(diǎn)時(shí),探究此時(shí)線段CD,AD,NH之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點(diǎn),連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點(diǎn),連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點(diǎn),連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第12個(gè)圖形中有全等三角形的對(duì)數(shù)是( )
A. 80對(duì)B. 78對(duì)C. 76對(duì)D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校綜合實(shí)踐活動(dòng)小組的同學(xué)為了解七年級(jí)學(xué)生上學(xué)期參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽樣調(diào)查了學(xué)校部分七年級(jí)學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的情況,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖中的信息解決問題:
(1)扇形統(tǒng)計(jì)圖中的a= ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)對(duì)于“綜合實(shí)踐活動(dòng)為6天”的扇形,對(duì)應(yīng)的圓心角為 度;
(3)如果全市七年級(jí)共有12000名學(xué)生,通過計(jì)算說明“綜合實(shí)踐活動(dòng)不超過4天”的有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形邊,,沿折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為,將繞著點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為.記旋轉(zhuǎn)過程中的三角形為,在旋轉(zhuǎn)過程中設(shè)直線與射線、射線分別交于點(diǎn)、,當(dāng)時(shí),則的長(zhǎng)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com