【題目】如圖,是的直徑,為半徑的中點(diǎn),過作交弦于點(diǎn),交于點(diǎn),且.
(1)求證:是的切線;
(2)連接,,求的度數(shù);
(3)若,,求的半徑.
【答案】(1)證明見解析;(2);(3)的半徑為4.
【解析】
(1)連接,由等邊對(duì)等角的性質(zhì)可得:,,由垂線的性質(zhì)和三角形內(nèi)角和定理可得:∠OAG+∠ADC=90°,等角代換可得; ∠OGA+∠DGF=90°,繼而根據(jù)切線的判定即可求證結(jié)論;
(2)連接,先求證是等邊三角形,由等邊三角形的性質(zhì)可得,繼而由同弧所對(duì)的圓周角等于其所對(duì)的圓心角的一半即可求解的度數(shù);
(3)過點(diǎn)作于點(diǎn),先征得,在利用三角函數(shù)值求得: ,,然后求證由相似三角形的判定方法,由相似三角形的性質(zhì)可得:,進(jìn)而設(shè),, ,,,代入,解方程即可求解.
(1)證明:如圖1,連接.
∵,,
∵,.
又∵,
∴,
∴,
∴,
即是的切線.
(2)解:如圖1,連接.
∵,,
∴.
∵.
∴是等邊三角形,
∴,
∴.
(3)如圖2,過點(diǎn)作于點(diǎn).
∵,
∴.
∵,
∴,
在中,,
∴.
∵是的直徑,
∴,
∵,,
∴,
∴.
∵,設(shè),,則,,,
∴,
解得:,
∴,
∴的半徑為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于新冠狀病毒疫情的影響,城際公交車正常行駛時(shí)間與行駛道路受到限制.如圖,是某企業(yè)職工上班時(shí)乘車、步行、騎車的人數(shù)分布直方圖和扇形分布圖(兩圖都不完整),則下列結(jié)論中錯(cuò)誤的是( )
A.該企業(yè)總?cè)藬?shù)為50人B.騎車人數(shù)占總?cè)藬?shù)的20%
C.步行人數(shù)為30人D.乘車人數(shù)是騎車人數(shù)的2.5倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某次防災(zāi)抗災(zāi)過程中,為了保障某市的抗災(zāi)物資供應(yīng),現(xiàn)有一批救災(zāi)物資由,兩種型號(hào)的貨車運(yùn)輸至該市.已知輛型貨車和輛型貨車共可滿載救災(zāi)物資噸,輛型貨車和輛型貨車共可滿載救災(zāi)物資噸.
(1)求輛型貨車和輛型貨車分別能滿載多少噸;
(2)已知這批救災(zāi)物資共噸,計(jì)劃同時(shí)調(diào)用,兩種型號(hào)的貨車共輛,并要求一次性將全部物資運(yùn)送到該市,試求調(diào)用,兩種型號(hào)的貨車的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知小明家、體育場(chǎng)、超市在一條筆直的公路旁(小明家、體育場(chǎng)、超市到公路的距離忽略不計(jì)),圖中的信息反映的過程是小明從家跑步去體育場(chǎng),在體育場(chǎng)鍛煉了一陣后又走到超市買些學(xué)習(xí)用品,然后再走回家.圖中表示小明所用的時(shí)間,表示小明離家的距離.根據(jù)圖中的信息,下列說法中錯(cuò)誤的是( ).
A.體育場(chǎng)離小明家的距離是
B.小明在體育場(chǎng)鍛煉的時(shí)間是
C.小明從體育場(chǎng)出發(fā)到超市的平均速度是
D.小明從超市回家的平均速度是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.為了解一批口罩的質(zhì)量適合采用的調(diào)查方式是全面調(diào)查
B.“任意畫一個(gè)三角形,其內(nèi)角和為180°”是隨機(jī)事件
C.袋中有形狀、大小、質(zhì)地完全一樣的6個(gè)紅球和1個(gè)白球,從中隨機(jī)抽出一個(gè)球,一定是紅球
D.甲、乙兩人進(jìn)行射擊練習(xí),在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn),連結(jié)DE.
(1)求證:△ABD是等腰三角形;
(2)求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李輝到服裝專賣店去做社會(huì)調(diào)查,了解到商店為了激勵(lì)營業(yè)員的工作積極性實(shí)行了“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得了如下信息:
營業(yè)員 | 嘉琪 | 嘉善 |
月銷售件數(shù)/件 | 400 | 300 |
月總收入/元 | 7800 | 6600 |
假設(shè)月銷售件數(shù)為x件,月總收入為y元,銷售每件獎(jiǎng)勵(lì)a元,營業(yè)員月基本工資為b元.
(1)求a、b的值.
(2)若營業(yè)員嘉善某月總收入不低于4200元,那么嘉善當(dāng)月至少要賣多少件衣服?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn),,對(duì)△連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則連續(xù)作旋轉(zhuǎn)變第10的三角形的直角頂點(diǎn)的坐標(biāo)為____.連續(xù)作旋轉(zhuǎn)變第2011的第號(hào)三角形的直角頂點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小正方格都是邊長為1的正方形,我們把以格點(diǎn)間連接為邊的三角形稱為“格點(diǎn)三角形”,圖中的就是格點(diǎn)三角形,在建立平面直角坐標(biāo)系后,O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)
(1)以O點(diǎn)為位似中心在軸的左側(cè)將△OBC放大兩倍(即新圖與原圖的相似比為2),在該坐標(biāo)系中畫出圖形;
(2)分別寫出B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′、C′的坐標(biāo);
(3)如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com