【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3),以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O、B、C的對(duì)應(yīng)點(diǎn)分別為D、E、F,且點(diǎn)D恰好落在BC邊上.

(1)在原圖上畫(huà)出旋轉(zhuǎn)后的矩形;

(2)求此時(shí)點(diǎn)D的坐標(biāo).

【答案】(1)見(jiàn)解析(2)(1,3)

【解析】

(1)根據(jù)題意作出圖形即可;
(2)根據(jù)矩形的性質(zhì)得到AC=OB=3,OA=BC=5,∠OBC=∠C=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AO=5,由勾股定理即可得到結(jié)論.

(1)如圖所示,矩形AFED即為所求,

(2)∵A(5,0),B(0,3),

OA=5,OB=3,

四邊形AOBC是矩形,

AC=OB=3,OA=BC=5,∠OBC=∠C=90°,

矩形ADEF是由矩形AOBC旋轉(zhuǎn)得到,

AD=AO=5,

Rt△ADC中,CD==4,

BD=BC-CD=1,

D(1,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點(diǎn)EDFAC于點(diǎn)F,連接EFAD于點(diǎn)O(1)求證:AD垂直平分EF;

(2)若∠BAC=寫(xiě)出DOAD之間的數(shù)量關(guān)系,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中

1)觀察發(fā)現(xiàn):將這兩個(gè)三角形按圖(1)所示的方式擺放,使點(diǎn)落在上,的延長(zhǎng)線交于點(diǎn),連結(jié),易證,請(qǐng)你直接寫(xiě)出之間的數(shù)量關(guān)系:

2)類比探究:將繞點(diǎn)旋轉(zhuǎn)到圖(2)的位置時(shí),使的延長(zhǎng)線于點(diǎn),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫(xiě)出此時(shí)之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開(kāi),得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足∠BQP=∠B,則下列五個(gè)數(shù)據(jù),3,,2,中可以作為線段AQ長(zhǎng)的有_____個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.

1)按要求作圖:

①畫(huà)出△ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形△A1B1C1;

②畫(huà)出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2

2)按照(1)中②作圖,回答下列問(wèn)題:△A2B2C2中頂點(diǎn)A2坐標(biāo)為   B2的坐標(biāo)為   ,若Pa,b)為△ABC邊上一點(diǎn),則點(diǎn)P對(duì)應(yīng)的點(diǎn)Q的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2+bx+cx軸交于點(diǎn)A(-3,0)、B(1,0),C為頂點(diǎn),直線y=x+m經(jīng)過(guò)點(diǎn)A,與y軸交于點(diǎn)D.

(1)b、c的值;

(2)∠DAO的度數(shù)和線段AD的長(zhǎng);

(3)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′,若新拋物線經(jīng)過(guò)點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長(zhǎng)度相同,且斜邊BCBE在同一直線上,ACBD交于點(diǎn)O,連接CD

求證:CDO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D兩點(diǎn)在半圓上,CEABE,DFABF,點(diǎn)PAB上的一個(gè)動(dòng)點(diǎn),已知AB=10,CE=4,DF=3,則PC+PD的最小值是(  )

A. 7 B. 7 C. 10 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 30°時(shí),點(diǎn) C 轉(zhuǎn)到 C′的位置,BC′ AC 交于點(diǎn) D,則 的值為(

A. 2 B. 2﹣ C. ﹣2 D. ﹣3

查看答案和解析>>

同步練習(xí)冊(cè)答案