【題目】已知點P為拋物線yx2上一動點,以P為頂點,且經(jīng)過原點O的拋物線,記作“yp”,設(shè)其與x軸另一交點為A,點P的橫坐標為m

1當△OPA為直角三角形時,m=    ;

當△OPA為等邊三角形時,求此時“yp”的解析式;

2)若P點的橫坐標分別為12,3,…n(n為正整數(shù))時,拋物線“yp”分別記作“”、“”…,“”,設(shè)其與x軸另外一交點分別為A1,A2A3,…An,過P1P2,P3,…Pnx軸的垂線,垂足分別為H1H2,H3,…Hn

 1) Pn的坐標為    ;OAn=    (用含n的代數(shù)式來表示)

PnHnOAn=16時,求n的值.

 2)是否存在這樣的An,使得∠OP4An=90°,若存在,求n的值;若不存在,請說明理由.

【答案】1① 2;yx2+2x;(21)(n,n2);2nn=8;2):存在,n=10

【解析】

1)①由△OPA為直角三角形時.得到△OPA為以點P為頂點的等腰直角三角形,從而可得答案,②由△OPA為等邊三角形,過P,利用三角函數(shù)與拋物線的解析式,求點的坐標,從而可得答案,

21)①利用Pn的橫坐標為n,結(jié)合拋物線的對稱性可得答案,②由 PnHnOAn=16,建立方程求解即可,2) 畫出圖形,證明RtOP4H4RtP4AnH4即可得到答案.

解:(1當△OPA為直角三角形時.

PO=PA,故△OPA為以點P為頂點的等腰直角三角形,

∴點P的橫坐標和縱坐標相同,故點P(m,m),

將點P的坐標代入yx2得:mm2,解得:m=02(舍去0)

故答案為:2;

當△OPA為等邊三角形時,如圖,過P,

P(m,m)

將點P的坐標代入拋物線表達式,

解得:m=2,

故點P的坐標為(26),

故“yp”的解析式為:y=a(x2)2+6,

A的坐標為(2m,0),即(4,0)

將點A的坐標代入y=a(x2)2+6并解得:a,

故“yp”的解析式為:y(x2)2+6x2+2x;

21) 由題意得:Pn的橫坐標為n,則其坐標為(nn2),

由拋物線的對稱性得:An=2n

故答案為:(nn2);2n

由題意得:PnHnOAnn22n=16,

解得:n=8或﹣4(舍去﹣4),

n=8;

 2)存在,理由:

如下圖所示,由1)知,點P4的坐標為(4,8)An=2n,

OH4=4P4H4=8,H4An=2n4

∵∠OP4An=90°,∴∠OP4H4+H4P4An=90°.

∵∠H4P4An+P4AnH4=90°,

∴∠OP4H4=P4AnH4,

RtOP4H4RtP4AnH4,

P4H42=OH4H4An,

82=4×(2n4),

解得:n=10

時,使得∠=90°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,PD切O于點C,與BA的延長線交于點D,DEPO交PO延長線于點E,連接PB,EDB=EPB

(1)求證:PB是的切線

(2)若PB=6,DB=8,求O的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點AC分別在軸和軸上,點B的坐標為2,3。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE。

1)求k的值及點E的坐標;

2)若點F是邊上一點,且FBC∽△DEB,求直線FB的解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小李在某商場購買兩種商品若干次(每次商品都買) ,其中前兩次均按標價購買,第三次購買時,商品同時打折.三次購買商品的數(shù)量和費用如下表所示:

購買A商品的數(shù)量/

購買B商品的數(shù)量/

購買總費用/

第一次

第二次

第三次

1)求商品的標價各是多少元?

2)若小李第三次購買時商品的折扣相同,則商場是打幾折出售這兩種商品的?

3)在(2)的條件下,若小李第四次購買商品共花去了元,則小李的購買方案可能有哪幾種?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為宣傳普及新冠肺炎防治知識,引導學生做好防控.某校舉行了主題為防控新冠,從我做起的線上知識競賽活動,測試內(nèi)容為20道判斷題,每道題5分,滿分100分,為了解八、九年級學生此次競賽成績的情況,分別隨機在八、九年級各抽取了20名參賽學生的成績.已知抽查得到的八年級的數(shù)據(jù)如下:80,9575,75,90,75,8065,8085,7565,70,65,8570,9580,7580

為了便于分析數(shù)據(jù),統(tǒng)計員對八年級數(shù)據(jù)進行了整理,得到了表一:

成績等級

分數(shù)(單位:分)

學生數(shù)

D

60x≤70

5

C

70x≤80

a

B

80x≤90

b

A

90x≤100

2

九年級成績的平均數(shù)、中位數(shù)、優(yōu)秀率如下:(分數(shù)80分以上、不含80分為優(yōu)秀)

年級

平均數(shù)

中位數(shù)

優(yōu)秀率

八年級

77.5

c

m%

九年級

76

82.5

50%

1)根據(jù)題目信息填空:a  ,c  ,m  

2)八年級小宇和九年級小樂的分數(shù)都為80分,請判斷小宇、小樂在各自年級的排名哪位更靠前?請簡述你的理由;

3)若九年級共有600人參加參賽,請估計九年級80分以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與頂點為的拋物線的交點軸上,交點軸上.

1)求拋物線的解析式.

2是否為直角三角形,請說明理由.

3)在第二象限的拋物線上,是否存在異于頂點的點,使的面積相等?若存在,求出符合條件的點坐標.若不存在,請說明理由.

4)在第三象限的拋物線上求出點,使

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為(  )

A. 3km B. 3km C. 4km D. (3-3)km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,對角線ACBD相交于點O,E是邊AB上的一個動點(不與A、B重合),連接EO并延長,交CD于點F,連接AFCE,下列四個結(jié)論中:

①對于動點E,四邊形AECF始終是平行四邊形;

②若∠ABC90°,則至少存在一個點E,使得四邊形AECF是矩形;

③若ABAD,則至少存在一個點E,使得四邊形AECF是菱形;

④若∠BAC45°,則至少存在一個點E,使得四邊形AECF是正方形.

以上所有正確說法的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+6x5的圖象與x軸交于A、B兩點,與y軸交于點C,其頂點為P,連接PAAC、CP,過點Cy軸的垂線l

1P的坐標   ,C的坐標   ;

2)直線1上是否存在點Q,使△PBQ的面積等于△PAC面積的2倍?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案