【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).
(1)求k的值;
(2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),且在第二象限內(nèi)運(yùn)動(dòng),試寫(xiě)出△OPA的面積S關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍.
(3)探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△OPA的面積為,并說(shuō)明理由.
【答案】(1)k=;(2)△OPA的面積S=x+18 (﹣8<x<0);(3)點(diǎn)P坐標(biāo)為(,)或(,)時(shí),三角形OPA的面積為.
【解析】
(1)將點(diǎn)E坐標(biāo)(﹣8,0)代入直線y=kx+6就可以求出k值,從而求出直線的解析式;
(2)由點(diǎn)A的坐標(biāo)為(﹣6,0)可以求出OA=6,求△OPA的面積時(shí),可看作以O(shè)A為底邊,高是P點(diǎn)的縱坐標(biāo)的絕對(duì)值.再根據(jù)三角形的面積公式就可以表示出△OPA.從而求出其關(guān)系式;根據(jù)P點(diǎn)的移動(dòng)范圍就可以求出x的取值范圍.
(3)分點(diǎn)P在x軸上方與下方兩種情況分別求解即可得.
(1)∵直線y=kx+6過(guò)點(diǎn)E(﹣8,0),
∴0=﹣8k+6,
k=;
(2)∵點(diǎn)A的坐標(biāo)為(﹣6,0),
∴OA=6,
∵點(diǎn)P(x,y)是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn),
∴△OPA的面積S=×6×(x+6)=x+18 (﹣8<x<0);
(3)設(shè)點(diǎn)P的坐標(biāo)為(m,n),則有S△AOP=,
即,
解得:n=±,
當(dāng)n=時(shí),=x+6,解得x=,
此時(shí)點(diǎn)P在x軸上方,其坐標(biāo)為(,);
當(dāng)n=-時(shí),-=x+6,解得x=,
此時(shí)點(diǎn)P在x軸下方,其坐標(biāo)為(,),
綜上,點(diǎn)P坐標(biāo)為:(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,我們把,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),連接任意兩個(gè)格點(diǎn)的線段叫網(wǎng)格線段,以網(wǎng)格線段為邊組成的圖形叫做格點(diǎn)圖形,在下列如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1.
(1)請(qǐng)你在圖1中畫(huà)一個(gè)格點(diǎn)圖形,且該圖形是邊長(zhǎng)為 的菱形;
(2)請(qǐng)你在圖2中用網(wǎng)格線段將其切割成若干個(gè)三角形和正方形,拼接成一個(gè)與其面積相等的正方形,并在圖3中畫(huà)出格點(diǎn)正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+5經(jīng)過(guò)點(diǎn)B(3,9)和A(﹣6,m).
(1)求k,m的值;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,10個(gè)邊長(zhǎng)為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過(guò)原點(diǎn)的一條直線l將這10個(gè)正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論: ①當(dāng)x>3時(shí),y<0;②3a+b>0;③﹣1≤a≤﹣ ;④3≤n≤4中,
正確的是( )
A.①②
B.③④
C.①④
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線PD垂直平分⊙O的半徑OA于點(diǎn)B,PD交⊙O于點(diǎn)C、D,PE是⊙O的切線,E為切點(diǎn),連結(jié)AE,交CD于點(diǎn)F.
(1)若⊙O的半徑為8,求CD的長(zhǎng);
(2)證明:PE=PF;
(3)若PF=13,sinA= ,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=ax2﹣4ax+3(a≠0)與y軸交于點(diǎn)A,A、B兩點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),直線OB分別與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)C.
(1)直接寫(xiě)出對(duì)稱(chēng)軸及B點(diǎn)的坐標(biāo);
(2)已知直線y2=bx﹣4b+3(b≠0)與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)D. ①判斷直線y2=bx﹣4b+3(b≠0)是否經(jīng)過(guò)點(diǎn)B,并說(shuō)明理由;
②若△BDC的面積為1,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,EF∥AB,對(duì)角線AC交EF于點(diǎn)G,那么與∠BAC相等的角的個(gè)數(shù)有(∠BAC除外)( )
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1: ,EF⊥CE,求EF:EG的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com