在等腰直角三角形ABC中,AB=AC=4,點(diǎn)O為BC的中點(diǎn),以O(shè)為圓心作⊙O交BC于點(diǎn)M、N,⊙O與AB、AC相切,切點(diǎn)分別為D、E,則⊙O的半徑和∠MND的度數(shù)分別為

[  ]

A.2,22.

B.3,30°

C.3,22.

D.2,30°

答案:A
解析:

  分析:首先連接AO,由切線的性質(zhì),易得OD⊥AB,即可得OD是△ABC的中位線,繼而求得OD的長(zhǎng);根據(jù)圓周角定理即可求出∠MND的度數(shù).

  解答:解:連接OA,

  ∵AB與⊙O相切,

  ∴OD⊥AB,

  ∵在等腰直角三角形ABC中,AB=AC=4,O為BC的中點(diǎn),

  ∴AO⊥BC,

  ∴OD∥AC,

  ∵O為BC的中點(diǎn),

  ∴OD=AC=2;

  ∵∠DOB=45°,

  ∴∠MND=∠DOB=22.5°,

  故選A.

  點(diǎn)評(píng):此題考查了切線的性質(zhì)、圓周角定理、切線長(zhǎng)定理以及等腰直角三角形性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.


提示:

切線的性質(zhì);等腰直角三角形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正方形ABCD的邊AB上連接等腰直角三角形,然后在等腰直角三角形的直角邊上連接正方形,無(wú)限重復(fù)上述過(guò)程,如果第一個(gè)正方形ABCD的邊長(zhǎng)為1,那么第n個(gè)正方形的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰直角三角形ABC中,AB=1,∠A=90°,點(diǎn)E為腰AC的中點(diǎn),點(diǎn)F在底邊BC上,且FE⊥BE,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、在等腰直角三角形ABC的斜邊AB所在的直線上有點(diǎn)P,滿足S=AP2+BP2,求所有這樣的P點(diǎn),使得S=2CP2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,點(diǎn)E在邊AB上,ED與AC交于點(diǎn)F,連接AD.
(1)求證:△BCE≌△ACD.
(2)求證:AB⊥AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在等腰直角三角形ABC中,∠C=90°,點(diǎn)D在CB的延長(zhǎng)線上,且BD=AB,求∠ADB的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案