【題目】如圖,在中,,若是和的平分線(xiàn)交點(diǎn),求的度數(shù)。
若是內(nèi)任意一點(diǎn),試探究與之間的關(guān)系,并說(shuō)明理由
請(qǐng)你直接利用以上結(jié)論,解決以下問(wèn)題:
①圖中點(diǎn)為內(nèi)任意一點(diǎn),若則
②如圖平分平分,若,求的度數(shù).
【答案】(1)∠BDC=125°;(2)∠BDC=∠BAC+∠ABD+∠ACD,理由見(jiàn)解析;(3)①60;②∠DCE=90°.
【解析】
(1)根據(jù)三角形的內(nèi)角和與DB平分∠ABC,DC平分∠ACB可求得∠DBC+∠DCB的度數(shù),再在△DBC中應(yīng)用三角形內(nèi)角和定理即可求出結(jié)果;
(2)作射線(xiàn)AD,再運(yùn)用三角形的外角性質(zhì)即可得出結(jié)論;
(3)①直接應(yīng)用(2)的結(jié)論計(jì)算即可;
②先由(2)的結(jié)論求出∠ADB+∠AEB的度數(shù),再由CD平分∠ADB,CE平分∠ACB可求出∠ADC+∠AEC的度數(shù),然后再運(yùn)用(2)的結(jié)論即可求出結(jié)果.
解:(1)∵∠A=70°,
∴∠ABC+∠ACB=180°-∠A=180°-70°=110°,
∵DB平分∠ABC,DC平分∠ACB,
∴∠DBC=∠ABC,∠DCB=∠ACB,
∴∠DBC+∠DCB=(∠ABC+∠ACB)=×110°=55°,
∴∠BDC=180°-55°=125°;
(2)∠BDC=∠BAC+∠ABD+∠ACD,理由如下:
如圖2,作射線(xiàn)AD,∵∠1、∠2分別是△ABD和△ACD的外角,
∴∠1=∠BAD+∠ABD,∠2=∠CAD+∠ACD,
∴∠BDC=∠1+∠2=∠BAD+∠ABD+∠CAD+∠ACD=∠BAC+∠ABD+∠ACD.
(3)①由(2)的結(jié)論可得:∠ABD+∠ACD=∠BDC―∠A=110°-50°=60°;故答案為60;
②由(2)的結(jié)論可得:∠ADB+∠AEB=∠DBE―∠A=130°-50°=80°;
∵CD平分∠ADB,CE平分∠ACB,
∴∠ADC=∠ADB,∠AEC=∠AEB,
∴∠ADC+∠AEC=(∠ADB+∠AEB)=×80°=40°,
又∵∠DCE=∠ADC+∠A+∠AEC,
∴∠DCE=50°+40°=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種工具,每天所得的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案:
方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元.
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】榮慶公司計(jì)劃從商店購(gòu)買(mǎi)同一品牌的臺(tái)燈和手電筒,已知購(gòu)買(mǎi)一個(gè)臺(tái)燈比購(gòu)買(mǎi)一個(gè)手電筒多用20元,若用400元購(gòu)買(mǎi)臺(tái)燈和用160元購(gòu)買(mǎi)手電筒,則購(gòu)買(mǎi)臺(tái)燈的個(gè)數(shù)是購(gòu)買(mǎi)手電筒個(gè)數(shù)的一半.
(1)求購(gòu)買(mǎi)該品牌一個(gè)臺(tái)燈、一個(gè)手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購(gòu)買(mǎi)一個(gè)該品牌臺(tái)燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺(tái)燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買(mǎi)臺(tái)燈和手電筒的總費(fèi)用不超過(guò)670元,那么榮慶公司最多可購(gòu)買(mǎi)多少個(gè)該品牌臺(tái)燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各式,能簡(jiǎn)算的要簡(jiǎn)算
(1)﹣32﹣(﹣5)3×()2﹣15÷|﹣3|
(2)(﹣3)×+8×(﹣2)﹣11÷(﹣)
(3)﹣4﹣2×32+(﹣2×32)
(4)(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,L1、L2分別表示兩個(gè)一次函數(shù)的圖象,它們相交于點(diǎn)P.
(1)求出兩條直線(xiàn)的函數(shù)關(guān)系式;
(2)點(diǎn)P的坐標(biāo)可看作是哪個(gè)二元一次方程組的解?
(3)求出圖中△APB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形按一定規(guī)律排列,觀察并回答:
(1)依照此規(guī)律,第四個(gè)圖形共有 個(gè)★,第六個(gè)圖形共有 個(gè)★;
(2)第n個(gè)圖形中有★ 個(gè);
(3)根據(jù)(2)中的結(jié)論,第幾個(gè)圖形中有2020個(gè)★?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入相應(yīng)括號(hào)里:
,8.2,-7,0,-0.3,102 ,-2.1010010001…,,
非負(fù)整數(shù)集合:{ …}
分?jǐn)?shù)集合:{ …}
無(wú)理數(shù)集合:{ …}
負(fù)數(shù)集合:{ …}
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從左邊第一個(gè)格子開(kāi)始向右數(shù),在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中任意三個(gè)相鄰格子中所填整數(shù)之和都相等,若取前3格子中的任意兩個(gè)數(shù)記作,且,那么所有的的和可以通過(guò)計(jì)算得到,其結(jié)果為_____,若為前格子中的任意兩個(gè)數(shù),且,則所有的的和為_____.
9 | ★ | ☆ | x | ﹣6 | 2 | …… |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=x+bx+c的頂點(diǎn)為D,且經(jīng)過(guò)A(1,0);B(0,2) 兩點(diǎn),將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90后,點(diǎn)B落到點(diǎn)C的位置,將該拋物線(xiàn)沿著對(duì)稱(chēng)軸上下平移,使之經(jīng)過(guò)點(diǎn)C,此時(shí)得到的新拋物線(xiàn)與y軸的交點(diǎn)為B1,頂點(diǎn)為D.
(1)求新拋物線(xiàn)的解析式;
(2)若點(diǎn)N在新拋物線(xiàn)上,滿(mǎn)足三角形NBB1的面積是三角形NDD1面積的2倍,求點(diǎn)N坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com