【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為y=-x,直線l2與l1交于點(diǎn)A(a,-a),與y軸交于點(diǎn)B(0,b),其中a,b滿足(a+3)2+=0.
(1)求直線l2的解析式;
(2)在平面直角坐標(biāo)系中第二象限有一點(diǎn)P(m,5),使得S△AOP=S△AOB,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)已知平行于y軸左側(cè)有一動(dòng)直線,分別與l1,l2交于點(diǎn)M、N,且點(diǎn)M在點(diǎn)N的下方,點(diǎn)Q為y軸上一動(dòng)點(diǎn),且△MNQ為等腰直角三角形,請(qǐng)求出滿足條件的點(diǎn)Q的坐標(biāo).
【答案】(1)y=x+4;(2)P點(diǎn)坐標(biāo)為(-1,5)或(-9,5);(3)Q點(diǎn)的坐標(biāo)為(0,)或(0,)或(0,).
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì),可得a,b,根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)平行線間的距離相等,可得Q到AO的距離等于B到AO的距離,根據(jù)等底等高的三角形的面積相等,可得S△AOP=S△AOB,根據(jù)解方程組,可得P點(diǎn)坐標(biāo);
(3)根據(jù)等腰直角三角形的性質(zhì),可得關(guān)于a的方程,根據(jù)解方程,可得a,根據(jù)平行于x軸直線上點(diǎn)的縱坐標(biāo)相等,可得答案.
解:(1)由(a+3)2+=0,得
a=-3,b=4,
即A(-3,3),B(0,4),
設(shè)l2的解析式為y=kx+b,將A,B點(diǎn)坐標(biāo)代入函數(shù)解析式,得
,
解得,
l2的解析式為y=x+4;
(2)如圖1,
作PB∥AO,P到AO的距離等于B到AO的距離,
S△AOP=S△AOB.
∵PB∥AO,PB過(guò)B點(diǎn)(0,4),
∴PB的解析式為y=-x+4或y=-x-4,
又P在直線y=5上,
聯(lián)立PB及直線y=5,得
-x+4=5或-x-4=5,
解得x=-1或-9,
∴P點(diǎn)坐標(biāo)為(-1,5)或(-9,5);
(3)設(shè)M點(diǎn)的坐標(biāo)為(a,-a),N(a,a+4),
∵點(diǎn)M在點(diǎn)N的下方,
∴MN=a+4-(-a)=+4,
如圖2,
當(dāng)∠NMQ=90°時(shí),即MQ∥x軸,NM=MQ,+4=-a,
解得a=-,即M(-,),
∴Q(0,);
如圖3,
當(dāng)∠MNQ=90°時(shí),即NQ∥x軸,NM=NQ,+4=-a,
解得a=-,即N(-,),
∴Q(0,),
如圖4,
當(dāng)∠MQN=90°時(shí),即NM∥y軸,MQ=NQ,a+2=-a,
解得a=-,
∴Q(0,).
綜上所述:Q點(diǎn)的坐標(biāo)為(0,)或(0,)或(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列多項(xiàng)式的乘法中,可以用平方差公式計(jì)算的有( )
A.(x+)(﹣x﹣)B.(﹣2+m)(﹣m﹣2)
C.(﹣a+b)(a﹣b)D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類(lèi):2小時(shí)以內(nèi),2~4小時(shí)(含2小時(shí)),4~6小時(shí)(含4小時(shí)),6小時(shí)及以上,并繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“4~6小時(shí)”對(duì)應(yīng)的圓心角度數(shù)為 °;
(3)若該地區(qū)共有20000名中學(xué)生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)(-y+1,x+1)叫做點(diǎn)P伴隨點(diǎn).已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An,….若點(diǎn)A1的坐標(biāo)為(2,4),點(diǎn)A2017的坐標(biāo)為 ( )
A. (-3,3) B. (-2,-2) C. (3,-1) D. (2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y1=-x+m與y軸交于點(diǎn)A(0,6),直線l2:y2=kx+1分別與x軸交于點(diǎn)B(-2,0),與y軸交于點(diǎn)C,兩條直線l1、l2相交于點(diǎn)D,連接AB.
(1)求兩直線l1、l2交點(diǎn)D的坐標(biāo);
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)購(gòu)買(mǎi)甲、乙兩種樹(shù)苗進(jìn)行綠化,已知甲種樹(shù)苗每棵30元,乙種樹(shù)苗每棵20元,且乙種樹(shù)苗棵數(shù)比甲種樹(shù)苗棵數(shù)的2倍少40棵,購(gòu)買(mǎi)兩種樹(shù)苗的總金額為9000元.
(1)求購(gòu)買(mǎi)甲、乙兩種樹(shù)苗各多少棵?
(2)為保證綠化效果,社區(qū)決定再購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共10棵,總費(fèi)用不超過(guò)230元,求可能的購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) 的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求以A,B,C,D為頂點(diǎn)的四邊形的面積;
(2)在拋物線上是否存在點(diǎn)P,使得△ABP的面積是△ABC的面積的2倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com