【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
求一次函數(shù)與反比例函數(shù)的表達式;
求的面積;
根據(jù)所給條件,請直接寫出不等式的解集.
【答案】 ,; ;,.
【解析】
(1)把A(-2,1)代入反比例函數(shù)y=,求出m的值即可;把B(1,n)代入反比例函數(shù)的解析式可求出n,從而確定B點坐標為(1,-2),然后利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)設直線y=-x-1與x軸的交點為C,根據(jù)解析式求得C的坐標,然后根據(jù)S△ABC=S△OAC+S△OBC即可求得;
(3)觀察函數(shù)圖象得到當-2<x<0或x>1時,一次函數(shù)的圖象都在反比例函數(shù)的圖象的下方,即一次函數(shù)的值小于反比例函數(shù)的值.
把點代入反比例函數(shù)得:
,
解得:,
即反比例函數(shù)的解析式為:,
把點代入反比例函數(shù)得:
,
即點A的坐標為:,點B的坐標為:,
把點和點代入一次函數(shù)得:
,
解得:,
即一次函數(shù)的表達式為:,
把代入一次函數(shù)得:
,
解得:,
即點C的坐標為:,OC的長為1,
點A到OC的距離為1,點B到OC的距離為2,
,
,
,
如圖可知:的解集為:,.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當∠ABC=45°時,求證:AD=DE;理由;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數(shù)量關系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數(shù)量關系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,以BC為邊向正方形內部作等邊△BCE,連接AE并延長交CD于F,連接DE,下列結論:①AE=DE;②∠CEF=45°;③AE=EF;④△DEF∽△ABE,其中正確的結論共有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為△ABC內一點,E為△ABC外一點,且∠ABC=∠DBE,∠3=∠4.
求證:(1)△ABD∽△CBE;
(2)△ABC∽△DBE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化,開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經過實驗分析可知,學生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?
(2)一道數(shù)學競賽題,需要講16分鐘,為了效果較好,要求學生的注意力指標數(shù)最低達到36,那么經過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=3,cos∠B=,將△ABC繞點C順時針旋轉90°得到△AB'C,P為線段AB上的動點,以點P為圓心,PA長為半徑作⊙P,當⊙P與△A′B′C的一邊所在的直線相切時,⊙P的半徑為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要________個小立方塊.最終搭成的長方體的表面積是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com