【題目】如圖,在ABCD中,FAD的中點,延長BC到點E,使CE=BC,連結DE,CF

1)求證:四邊形CEDF是平行四邊形;

2)若AB=4AD=6,∠B=60°,求DE的長。

【答案】1)見解析(2

【解析】

試題(1)由平行四邊形的對邊平行且相等的性質推知AD∥BC,且AD=BC;然后根據(jù)中點的定義、結合已知條件推知四邊形CEDF的對邊平行且相等(DF=CE,且DF∥CE),即四邊形CEDF是平行四邊形;

2)如圖,過點DDH⊥BE于點H,構造含30度角的直角△DCH和直角△DHE.通過解直角△DCH和在直角△DHE中運用勾股定理來求線段ED的長度.

試題解析:(1)證明:在ABCD中,AD∥BC,且AD=BC

∵FAD的中點,

∴DF=AD

∵CE=BC,

∴DF=CE,且DF∥CE,

四邊形CEDF是平行四邊形;

如圖,過點DDH⊥BE于點H

ABCD中,∵∠B=60°,

∴∠DCE=60°

∵AB=4,

∴CD=AB=4,

∴CH=CD=2DH=2

CEDF中,CE=DF=AD=3,則EH=1

Rt△DHE中,根據(jù)勾股定理知DE=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】又到了一年中的春游季節(jié).某班學生利用周末去參觀“三軍會師紀念塔”.下面是兩位同學的一段對話:
甲:我站在此處看塔頂仰角為60°;
乙:我站在此處看塔頂仰角為30°;
甲:我們的身高都是1.6m;
乙:我們相距36m.
請你根據(jù)兩位同學的對話,計算紀念塔的高度.(精確到1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根.
(2)是否存在實數(shù)k使方程兩根的倒數(shù)和為2?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(a,3),B(b,1)都在雙曲線y= 上,點C,D,分別是x軸,y軸上的動點,則四邊形ABCD周長的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列例題的解題過程,并完成相關問題

例:如圖,在四邊形ABCD中,ADBC,∠B90°,AB8 cm,AD12cm,BC18cm,點P從點A出發(fā),以1cm/s的速度向點D運動;點Q從點C同時出發(fā),以2cm/s的速度向點B運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.從運動開始,使PQCDPQCD,分別經過多長時間?為什么?

解:設經過ts時,PQCDPQCD,此時四邊形PQCD為平行四邊形.

PD=(12tcmCQ2t cm,

12t2t.∴t4

∴當t4時,PQCD,且PQCD

設經過ts時,PQCD,分別過點P,DBC邊的垂線PE,DF,垂足分別為E,F

CFEQ時,四邊形PQCD為梯形(腰相等)或者平行四邊形.

∵∠B=∠A=∠DFB90°,

∴四邊形ABFD是矩形.∴ADBF

AD12 cm,BC18 cm,

CFBCBF6 cm

當四邊形PQCD為梯形(腰相等)時,

PD2BCAD)=CQ

∴(12t)+122t.∴t8

∴當t8時,PQCD

當四邊形PQCD為平行四邊形時,由知當t4時,PQCD

綜上,當t4時,PQCD;當t4t8時,PQCD

問題1:在整個運動過程中是否存在t值,使得四邊形PQCD是菱形?若存在,請求出t值;若不存在,請說明理由.

問題2:從運動開始,當t取何值時,四邊形PQBA是矩形?

問題3:在整個運動過程中是否存在t值,使得四邊形PQBA是正方形?若存在,請求出t值;若不存在,請說明理由.

問題4:是否存在t,使得△DQC是等腰三角形?若存在,請求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設立了一可以自由轉動的轉盤,AB為轉盤直徑,如圖所示,并規(guī)定:顧客消費100元(含100元)以上,就能獲得一次轉盤的機會,如果轉盤停止后,指針正好對準9折、8折、7折區(qū)域,顧客就可以獲得相應的優(yōu)惠.

(1)某顧客正好消費99元,是否可以獲得相應的優(yōu)惠.

(2)某顧客正好消費120元,他轉一次轉盤獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標系中的位置如圖.

(1)分別寫出下列各點的坐標:A′ ; B′ ;C′

(2)說明△A′B′C′由△ABC經過怎樣的平移得到?

(3)若點P(a,b)是△ABC內部一點,則平移后△A′B′C′內的對應點P′的坐標為

(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,D,E為斜邊AB上的兩個點,且BD=BC,AE=AC,則∠DCE的大小為(度).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y= (k>0,x>0)的圖象經過點C,則k的值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案