【題目】如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點(diǎn)E,過(guò)點(diǎn)C作AD的垂線交AB的延長(zhǎng)線于點(diǎn)G,垂足為F.連接OC.
(1)若∠G=48°,求∠ACB的度數(shù);
(2)若AB=AE,求證:∠BAD=∠COF;
(3)在(2)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S2.若tan∠CAF=,求的值.
【答案】(1)48°(2)證明見解析(3)
【解析】
(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;
(2)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得 ,則所對(duì)的圓周角相等,根據(jù)同弧所對(duì)的圓周角和圓心角的關(guān)系可得結(jié)論;
(3)過(guò)O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=2x-a,根據(jù)勾股定理列方程得:(2x-a)2=x2+a2,則a=x,代入面積公式可得結(jié)論.
(1)連接CD,
∵AD是⊙O的直徑,
∴∠ACD=90°,
∴∠ACB+∠BCD=90°,
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°,
∵∠BAD=∠BCD,
∴∠ACB=∠G=48°;
(2)∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
由(1)得:∠G=∠ACB,
∴∠BCG=∠DAC,
∴,
∵AD是⊙O的直徑,AD⊥PC,
∴,
∴,
∴∠BAD=2∠DAC,
∵∠COF=2∠DAC,
∴∠BAD=∠COF;
(3)過(guò)O作OG⊥AB于G,設(shè)CF=x,
∵tan∠CAF== ,
∴AF=2x,
∵OC=OA,由(2)得:∠COF=∠OAG,
∵∠OFC=∠AGO=90°,
∴△COF≌△OAG,
∴OG=CF=x,AG=OF,
設(shè)OF=a,則OA=OC=2x﹣a,
Rt△COF中,CO2=CF2+OF2,
∴(2x﹣a)2=x2+a2,
a=x,
∴OF=AG=x,
∵OA=OB,OG⊥AB,
∴AB=2AG=x,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形中,,,點(diǎn)在邊上,且,點(diǎn)是邊上一點(diǎn),連接,將四邊形沿折疊,若點(diǎn)的對(duì)稱點(diǎn)恰好落在邊上,則的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列4個(gè)命題:①兩邊及其中一邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等;②兩邊及其中一邊上的高對(duì)應(yīng)相等的兩個(gè)三角形全等;③兩邊及一角對(duì)應(yīng)相等的兩個(gè)三角形全等;④有兩角及其中一角的角平分線對(duì)應(yīng)相等的兩個(gè)三角形全等.其中正確的的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),有A、B、C三種不同型號(hào)的卡片若干張,其中A型是邊長(zhǎng)為a(a>b)的正方形,B型是長(zhǎng)為a、寬為b的長(zhǎng)方形,C型是邊長(zhǎng)為b的正方形.
(1)若用A型卡片1張,B型卡片2張,C型卡片1張拼成了一個(gè)正方形(如圖(2)),此正方形的邊長(zhǎng)為 ,根據(jù)該圖形請(qǐng)寫出一條屬于因式分解的等式: .
(2)若要拼一個(gè)長(zhǎng)為2a+b,寬為a+2b的長(zhǎng)方形,設(shè)需要A類卡片x張,B類卡片y張,C類卡片z張,則x+y+z= .
(3)現(xiàn)有A型卡片1張,B型卡片6張,C型卡片11張,從這18張卡片中拿掉兩張卡片,余下的卡片全用上,你能拼出一個(gè)長(zhǎng)方形或正方形嗎?有幾種拼法?請(qǐng)你通過(guò)運(yùn)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間 x(單位:h)變化的圖象如圖所示,
根據(jù)圖中提供的信息,有下列說(shuō)法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的有____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=13 cm,AC=20 cm,BC邊上的高為12 cm,則△ABC的面積是
A.126 cm2 或66 cm2B.66 cm2C.120 cm2D.126cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,點(diǎn)為邊上一動(dòng)點(diǎn),于點(diǎn),于點(diǎn),連結(jié),點(diǎn)為的中點(diǎn),則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接“國(guó)家衛(wèi)生城市”復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購(gòu)買、兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)型垃圾箱和2個(gè)型垃圾箱共需540元;購(gòu)買2個(gè)型垃圾箱比購(gòu)買3個(gè)型垃圾箱少用160元.
(1)每個(gè)型垃圾箱和型垃圾箱各多少元?
(2)現(xiàn)需要購(gòu)買,兩種型號(hào)的垃圾箱共300個(gè),設(shè)購(gòu)買型垃圾箱個(gè),購(gòu)買型垃圾箱和型垃圾箱的總費(fèi)用為元,求與的函數(shù)表達(dá)式.如果購(gòu)買型垃圾箱是型垃圾箱的2倍,求購(gòu)買型垃圾箱和型垃圾箱的總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長(zhǎng)為2,頂點(diǎn)A1,A2在線段OM上,頂點(diǎn)B1在弧MN上,頂點(diǎn)C1在線段ON上,在邊A2C1上取點(diǎn)B2,以A2B2為邊長(zhǎng)繼續(xù)作正方形A2B2C2A3,使得點(diǎn)C2在線段ON上,點(diǎn)A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com