A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
分析 由正方形的性質(zhì)得出AB=CD=AD,∠C=∠BAD=∠ADC=90°,∠ABD=∠ADB=45°,由折疊的性質(zhì)得出MN垂直平分AD,F(xiàn)D=CD,BN=CN,∠FDE=∠CDE,∠DFE=∠C=90°,∠DEF=∠DEC,由線段垂直平分線的性質(zhì)得出FD=FA,得出△ADF是等邊三角形,①正確;
設(shè)AB=AD=BC=4a,則MN=4a,BN=AM=2a,由等邊三角形的性質(zhì)得出∠DAF=∠AFD=∠ADF=60°,F(xiàn)A=AD=4a,F(xiàn)M=$\sqrt{3}$AM=2$\sqrt{3}$a,得出FN=MN-FM=(4-2$\sqrt{3}$)a,由三角函數(shù)的定義即可得出②正確;
求出△ADF的面積=$\frac{1}{2}$AD•FM=4$\sqrt{3}$a2,正方形ABCD的面積=16a2,得出③錯(cuò)誤;
求出∠BFE=∠DFB,∠BEF=∠DBF,證出△BEF∽△DBF,得出對(duì)應(yīng)邊成比例,得出④正確;即可得出結(jié)論.
解答 解:∵四邊形ABCD是正方形,
∴AB=CD=AD,∠C=∠BAD=∠ADC=90°,∠ABD=∠ADB=45°,
由折疊的性質(zhì)得:MN垂直平分AD,F(xiàn)D=CD,BN=CN,∠FDE=∠CDE,∠DFE=∠C=90°,∠DEF=∠DEC,
∴FD=FA,
∴AD=FD=FA,
即△ADF是等邊三角形,①正確;
設(shè)AB=AD=BC=4a,則MN=4a,BN=AM=2a,
∵△ADF是等邊三角形,
∴∠DAF=∠AFD=∠ADF=60°,F(xiàn)A=AD=4a,F(xiàn)M=$\sqrt{3}$AM=2$\sqrt{3}$a,
∴FN=MN-FM=(4-2$\sqrt{3}$)a,
∴tan∠EBF=$\frac{FN}{BN}$=$\frac{4-2\sqrt{3}}{2}$=2-$\sqrt{3}$,②正確;
∵△ADF的面積=$\frac{1}{2}$AD•FM=$\frac{1}{2}$×4a×2$\sqrt{3}$a=4$\sqrt{3}$a2,正方形ABCD的面積=(4a)2=16a2,
∴$\frac{{S}_{△ADF}}{{S}_{正方形ABCD}}$=$\frac{4\sqrt{3}}{16}$=$\frac{\sqrt{3}}{4}$,③錯(cuò)誤;
∵AF=AB,∠BAF=90°-60°=30°,
∴∠AFB=∠ABF=75°,
∴∠DBF=75°-45°=30°,∠BFE=360°-90°-60°-75°=135°=∠DFB,
∵∠BEF=180°-75°-75°=30°=∠DBF,
∴△BEF∽△DBF,
∴$\frac{BF}{DF}=\frac{EF}{BF}$,
∴BF2=DF•EF,④正確;
故選:B.
點(diǎn)評(píng) 本題是相似形綜合題目,考查了正方形的性質(zhì)、折疊的性質(zhì)、線段垂直平分線的性質(zhì)、等邊三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形是等邊三角形和證明三角形相似是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m>-$\frac{5}{2}$ | B. | m≥-2 | C. | m<-1 | D. | m≤-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{4}{15}$ | C. | $\frac{4}{9}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{7}$ | B. | $\frac{\sqrt{119}}{5}$ | C. | 2.4 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com