【題目】如圖,兩塊完全相同的含30°的直角三角板疊放在一起,且∠DAB=30°,有以下四個(gè)結(jié)論,①AF⊥BC;②∠BOE=135°;③O為BC中點(diǎn);④AG:DE=1:3,其中正確結(jié)論的序號(hào)是( 。
A.①②B.②④C.②③D.①③
【答案】D
【解析】
①根據(jù)已知得出∠CAF=30°,∠GAF=60°,進(jìn)而得出∠AFB的度數(shù);
②在四邊形ADOC中,根據(jù)四邊形的內(nèi)角和為360°可得出∠DOC的度數(shù),繼而得出∠BOE的度數(shù);
③利用△AGO≌△AFO,得出AO=CO=AC,進(jìn)而得出BO=CO=AO,即O為BC的中點(diǎn);
④利用假設(shè)DG=x,∠DAG=30°,得出AG=x,GE=3x,DE=4x,進(jìn)而得出答案.
解:∵兩塊完全相同的含30°角的直角三角板疊放在一起,且∠DAB=30°.
∴∠GAF=60°,∠CAF=30°,∠C=∠D=60°,
∴∠AFB=∠C+∠CAF=90°,
①AF⊥BC正確;
由①可得∠C=∠D=60°,∠DAC=120°,
∵∠C+∠D+∠DAC+∠DOC=360°,
∴∠DOC=120°,
∵∠DOC=∠BOE,
∴∠BOE=120°,
即②∠BOE=135°錯(cuò)誤;
連接AO,
∵兩塊完全相同的含30°的直角三角板疊放在一起,且∠DAB=30°,
∴AD=AC,∠DAG=∠CAF,∠D=∠C=60°,
∴△ADG≌△ACF(AAS),
∴AG=AF,
∵AO=AO,∠AGO=∠AFO=90°,
∴△AGO≌△AFO(SAS),
∴∠OAF=∠OAG=30°,
∴∠OAC=60°,
∵∠C=60°,
∴AO=CO=AC,
∵∠OAG=∠B=30°,
∴BO=AO,
∴BO=CO,
即可得③O為BC中點(diǎn)正確;
假設(shè)DG=x,
∵∠DAG=30°,
∴AG=x,AD=2x,DE=4x,
∴GE=3x,
故可得AG:DE=:4,即④錯(cuò)誤;
綜上可得①③正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:
(1)商場(chǎng)日銷(xiāo)售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷(xiāo)售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(a,b)是拋物線上一動(dòng)點(diǎn),OB⊥OA交拋物線于點(diǎn)B(c,d).當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)的過(guò)程中(點(diǎn)A不與坐標(biāo)原點(diǎn)O重合),以下結(jié)論:①ac為定值;②ac=﹣bd;③△AOB的面積為定值;④直線AB必過(guò)一定點(diǎn).正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=﹣x2+4x+c的圖象經(jīng)過(guò)A(1,y1),B(﹣1,y2),C(2+ ,y3)三點(diǎn),則y1、y2、y3的大小關(guān)系是( )
A. y1<y2<y3 B. y1<y3<y2 C. y2<y3<y1 D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c(b,c都是常數(shù))的圖象經(jīng)過(guò)點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2≤x≤2時(shí),求y的取值范圍.
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m+n=1,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)化簡(jiǎn):[x(x2y2﹣xy)﹣2y(x2﹣x3y)]÷3x2y
(2)化簡(jiǎn)求值:(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2,其中y=1,x=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的有( ).
①已知任意一邊和一個(gè)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
②任意兩角和一邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
③已知任意兩邊和一角對(duì)應(yīng)相等的兩個(gè)三角形全等.
④已知腰和頂角對(duì)應(yīng)相等的兩個(gè)等腰三角形全等.
⑤如果兩個(gè)三角形有兩條邊及其中一邊上的中線分別相等,那么這兩個(gè)三角形全等.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (1)如圖1,等腰Rt△ABC中,∠CAB=90°,點(diǎn)H在BC邊上,連AH,作等腰Rt△HFA,∠HFA=90°求證:AF=CF.
(2)如圖2,等腰Rt△ABC中,∠CAB=90°,D在BC上,AD⊥AE,AD=AE,G為CD中點(diǎn),求證:AG⊥BE
(3)如圖3,等腰Rt△ABC中,∠BAC=90°,過(guò)C作CD∥AB, CD=8,連AD,在AD上取一點(diǎn)E使AE=AB,連BE交AC于F,若AF=9,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸、y軸相交于P、Q兩點(diǎn),與y=的圖象相交于A(﹣2,m)、B(1,n)兩點(diǎn),連接OA、OB,給出下列結(jié)論:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正確的結(jié)論的序號(hào)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com