【題目】如圖1,在平面直角坐標(biāo)系中,,且滿足式子.

1)求出的值;

2)①在軸的正半軸上存在一點,使的面積等于的面積的一半,求出點的坐標(biāo);

②在坐標(biāo)軸的其它位置是否存在點,使的面積等于的面積的一半仍然成立,若存在,直接寫出其他符合條件的點的坐標(biāo);

3)如圖2,過點軸交軸于點,點為線段延長線上一動點,連接平分,,當(dāng)點運動時,求證:

【答案】1m=-2,n=4;(2)①M的坐標(biāo)為(3,0);②(-3,0)或(0,6)或(0-6); 3)見解析

【解析】

1)根據(jù)非負數(shù)的性質(zhì)列出方程組,解方程組即可;
2)①根據(jù)三角形的面積公式計算即可;
②分點Mxy軸上兩種情況計算;
3)根據(jù)角平分線的定義、垂直的定義得到∠POF=BOF,設(shè)∠POF=BOF=x,∠DOE=y,結(jié)合圖形得到x=y,得到答案.

解:(1)由題意得,,

解得m=-2,n=4;

2)①設(shè)點M的坐標(biāo)的坐標(biāo)為(x0),

ABC的面積= ×6×2=6

由題意得,×x×2=×6,

解得,x=3,

COM的面積等于△ABC的面積的一半時,點M的坐標(biāo)為(3,0);

②當(dāng)點Mx軸上時,由①得,點M的坐標(biāo)為(30)或(-3,0),
當(dāng)點My軸上時,設(shè)點M的坐標(biāo)的坐標(biāo)為(0,y),
由題意得,×|y|×1=×6,
解得,y=±6,
綜上所述,符合條件的點M的其他坐標(biāo)為(-3,0)或(0,6)或(0,-6);

3)∵OE平分∠AOP,
∴∠EOP=AOE,
OFOE,
∴∠EOP+POF=90°,∠AOE+BOF=90°,
∴∠POF=BOF,
設(shè)∠POF=BOF=x,∠DOE=y
CDy軸,
CDx軸,
∴∠OPD=POB=2x,
則∠POD=90°-2x,
∵∠EOF=90°,
y+90°-2x+x=90°,
解得,x=y,
∴∠OPD=2DOE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開通了互聯(lián)網(wǎng)家校合育教育平臺,為了解家長使用平臺的情況,學(xué)校將家長的使用情況分為經(jīng)常使用、“偶爾使用”和“不使用”三種類型,借助該平臺大數(shù)據(jù)功能,匯總出該校八(1)班和八(2)班全體家長的使用情況,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息解答下列問題

(1)此次調(diào)查的家長總?cè)藬?shù)為   ;

(2)扇形統(tǒng)計圖中代表“不使用”類型的扇形圓心角的度數(shù)是   °,并補全條形統(tǒng)計圖;

(3)若該校八年級學(xué)生家長共有1200人,根據(jù)此次調(diào)查結(jié)果估計該校八年級中“經(jīng)常使用”類型的家長約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①c>0;
②若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2
③2a﹣b=0;
<0,
其中,正確結(jié)論的個數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊的邊 上一點,延長線上一點,接交,過點作點.證明下列結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰RtACB,∠ACB90°,ACBC,點A、C分別在x軸、y軸的正半軸上.

1)如圖1,求證:∠BCO=∠CAO

2)如圖2,若OA5OC2,求B點的坐標(biāo)

3)如圖3,點C0,3),Q、A兩點均在x軸上,且SCQA18.分別以AC、CQ為腰在第一、第二象限作等腰RtCAN、等腰RtQCM,連接MNy軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:把形如的二次三項式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即.例如:的一種形式的配方;所以,,,的三種不同形式的配方(即余項分別是常數(shù)項、一次項、二次項).

請根據(jù)閱讀材料解決下列問題:

1)比照上面的例子,寫出三種不同形式的配方;

2)已知,求的值;

3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教育部明確要求中小學(xué)生每天要有2小時體育鍛煉,周末朱諾和哥哥在米的環(huán)形跑道上騎車鍛煉,他們在同一地點沿著同一方向同時出發(fā),騎行結(jié)束后兩人有如下對話:

朱諾:你要分鐘才能第一次追上我.

哥哥:我騎完一圈的時候,你才騎了半圈!

1)請根據(jù)他們的對話內(nèi)容,求出朱諾和哥哥的騎行速度(速度單位:米/秒);

2)哥哥第一次追上朱諾后,在第二次相遇前,再經(jīng)過多少秒,朱諾和哥哥相距?

查看答案和解析>>

同步練習(xí)冊答案