【題目】某校開展學生對食堂評價調(diào)查,每名學生只能從“優(yōu)”、“良”、“差”三種選擇其中一個進行評價,假設(shè)這三種評價是等可能的且所有學生都參與了評價.學校對學生的評價信息進行了統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖,利用圖中所提供的信息解決下面問題:
(1)學校共有多少學生參與評價?
(2)圖2中“良”所占扇形圓心角的度數(shù)是________;
(3)請將圖1補充完整;
(4)若甲、乙兩名學生參與了對食堂的評價,請你用列表格或畫樹狀圖的方法求兩人中至少有一個給“差”評價的概率.
【答案】(1)150人;(2)96°;(3)見解析;(4)列表見解析,
【解析】
(1)用中評和差評的人數(shù)之和除以它們所占的百分比得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以“良”所占的百分比得到圖2中“良”所占扇形圓心角的度數(shù);
(3)計算出“好評”的人數(shù),然后補全條形統(tǒng)計圖;
(4)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出兩人中至少有一個給“差”評價的結(jié)果數(shù),然后概率公式求解.
解:(1)學校參與評價的學生一共有:(個);
(2)360× =96°,
所以圖2中“良”所占扇形圓心角的度數(shù)是96°,
故答案為96°;
(3)“好評”的人數(shù)為60%×150=90(人),
圖1補充為:
(4)列表如下:
優(yōu) | 良 | 差 | |
優(yōu) | 優(yōu),優(yōu) | 優(yōu),良 | 優(yōu),差 |
良 | 良,優(yōu) | 良,良 | 良,差 |
差 | 差,優(yōu) | 差,良 | 差,差 |
由表可知,一共有種等可能結(jié)果,其中至少有一個給“差”的有種,
兩人中至少有一個給“差”的概率是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是二元一次方程組的解(OB>OC).
(1)求點A和點B的坐標;
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設(shè)點P的橫坐標為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.
①當0<t<3時,求m關(guān)于t的函數(shù)關(guān)系式;
②當m=時,求點P的橫坐標t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x交于A,B兩點,與y軸交于點C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點,D點在x軸下方且橫坐標小于3,則下列結(jié)論錯誤的是( 。
A.2a+b+c>0
B.a<﹣1
C.x(ax+b)≤a+b
D.雙曲線y=的兩分支分別位于第一、第三象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果關(guān)于x的不等式組至少有3個整數(shù)解,且關(guān)于x的分式方程的解為整數(shù),則符合條件的所有整數(shù)a的取值之和為( 。
A.﹣10B.﹣9C.﹣7D.﹣3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,半徑為1的與軸正半軸和軸正半軸分別交于兩點,直線:與軸和軸分別交于兩點.
(l)當直線與相切時,求出點的坐標和點的坐標;
(2)如圖2,當點在線段上時,直線與交于兩點(點在點的上方),過點作軸,與交于另一點,連結(jié)交軸于點.
①如圖3,若點與點重合時,求的長并寫出解答過程;
②如圖2,若點與點不重合時,的長是否發(fā)生變化,若不發(fā)生變化,請求出的長并寫出解答過程;若發(fā)生變化,請說明理由.
(3)如圖4,在(2)的基礎(chǔ)上,連結(jié),將線段繞點逆時針旋轉(zhuǎn)到,若點在的延長線時,請用等式直接表示線段,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一塊含30°(即∠CAB=30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN恰好重合,其量角器最外緣的讀數(shù)是從N點開始(即N點的讀數(shù)為0°),現(xiàn)有射線CP繞點C從CA的位置開始按順時針方向以每秒2度的速度旋轉(zhuǎn)到CB位置,在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E.
(1)當旋轉(zhuǎn)7.5秒時,連接BE,試說明:BE=CE;
(2)填空:①當射線CP經(jīng)過△ABC的外心時,點E處的讀數(shù)是 .
②當射線CP經(jīng)過△ABC的內(nèi)心時,點E處的讀數(shù)是 ;
③設(shè)旋轉(zhuǎn)x秒后,E點出的讀數(shù)為y度,則y與x的函數(shù)式是y= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com