【題目】如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3cm,BC=5cm.點(diǎn)P從A點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s.連結(jié)PO并延長(zhǎng)交BC于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<5).
(1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?
(2)設(shè)四邊形OQCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
備用圖
【答案】(1)當(dāng)t=時(shí),四邊形ABQP是平行四邊形(2)y=t+3(3)存在,當(dāng)t=時(shí),點(diǎn)O在線段AP的垂直平分線上
【解析】
(1)根據(jù)ASA證明△APO≌△CQO,再根據(jù)全等三角形的性質(zhì)得出AP=CQ=t,則BQ=5-t,再根據(jù)平行四邊形的判定定理可知當(dāng)AP∥BQ,AP=BQ時(shí),四邊形ABQP是平行四邊形,即t=5-t,求出t的值即可求解;
(2)過(guò)A作AH⊥BC于點(diǎn)H,過(guò)O作OG⊥BC于點(diǎn)G,根據(jù)勾股定理求出AC=4,由Rt△ABC的面積計(jì)算可求得AH=,利用三角形中位線定理可得OG=,再根據(jù)四邊形OQCD的面積y= S△OCD+S△OCQ=OC·CD+CQ·OG,代入數(shù)值計(jì)算即可得y與t之間的函數(shù)關(guān)系式;
(3)如圖2,若OE是AP的垂直平分線,可得AE=AP=,∠AEO=90°,根據(jù)勾股定理可得AE2+OE2=AO2,由(2)知:AO=2,OE=,列出關(guān)于t的方程,解方程即可求出t的值.
(1)∵四邊形ABCD是平行四邊形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO.
又∵∠AOP=∠COQ,
∴△APO≌△CQO,
∴AP=CQ=t.
∵BC=5,
∴BQ=5-t.
∵AP∥BQ,
當(dāng)AP=BQ時(shí),四邊形ABQP是平行四邊形,
即t=5-t,∴t=,
∴當(dāng)t=時(shí),四邊形ABQP是平行四邊形;
(2) 圖1
如圖1,過(guò)A作AH⊥BC于點(diǎn)H,過(guò)O作OG⊥BC于點(diǎn)G.
在Rt△ABC中,∵AB=3,BC=5,∴AC=4,
∴CO=AC=2,
S△ABC=AB·AC=BC·AH,
∴3×4=5AH,
∴AH=.
∵AH∥OG,OA=OC,
∴GH=CG,
∴OG=AH=,
∴y=S△OCD+S△OCQ=OC·CD+CQ·OG,
∴y=×2×3+×t×=t+3;
圖2
(3)存在.
如圖2,∵OE是AP的垂直平分線,
∴AE=AP=,∠AEO=90°,
由(2)知:AO=2,OE=,
由勾股定理得:AE2+OE2=AO2,
∴(t)2+()2=22,
∴t=或- (舍去),
∴當(dāng)t=時(shí),點(diǎn)O在線段AP的垂直平分線上.
故答案為:(1)當(dāng)t=時(shí),四邊形ABQP是平行四邊形(2)y=t+3(3)存在,當(dāng)t=時(shí),點(diǎn)O在線段AP的垂直平分線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是邊BC、AD上的點(diǎn),有下列條件:
①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF.
若要添加其中一個(gè)條件,使四邊形AECF一定是平行四邊形,則添加的條件可以是( )
A. ①②③④ B. ①②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,H在CD的延長(zhǎng)線上,四邊形CEFH也為正方形,則△DBF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋中裝有20個(gè)只有顏色不同的球,其中5個(gè)黃球,8個(gè)黑球,7個(gè)紅球.
(1)求從袋中摸出一個(gè)球是黃球的概率;
(2)現(xiàn)從袋中取出若干個(gè)黑球,攪勻后,使從袋中摸出一個(gè)黑球的概率是,求從袋中取出黑球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( )
A.直角三角形
B.正五邊形
C.正方形
D.平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形的各邊分別平行于 軸或 軸,物體甲和物體乙分別由點(diǎn) 同時(shí)出發(fā),沿長(zhǎng)方形 的邊作環(huán)繞運(yùn)動(dòng).物體甲按逆時(shí)針?lè)较蛞?/span>2個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?/span>4個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2020次相遇地點(diǎn)的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.圓內(nèi)接正六邊形的邊長(zhǎng)與該圓的半徑相等
B.在平面直角坐標(biāo)系中,不同的坐標(biāo)可以表示同一點(diǎn)
C.一元二次方程ax2+bx+c=0(a≠0)一定有實(shí)數(shù)根
D.將△ABC繞A點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADE,則△ABC與△ADE不全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖是用4個(gè)全等的長(zhǎng)方形拼成的一個(gè)“回形”正方形,圖中陰影部分面積用2種方法表示可得一個(gè)等式,這個(gè)等式為_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線AM∥BN,點(diǎn)E,F,D在射線AM上,點(diǎn)C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動(dòng)CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個(gè)角的比值.
(3)如果∠A=100°,那么在平行移動(dòng)CD的過(guò)程中,是否存在某一時(shí)刻,使∠AEB=∠BDC?若存在,求出此時(shí)∠AEB的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com