【題目】如圖,圖1、圖2、圖3、…圖n分別是⊙O的內(nèi)接正三角形ABC,正四邊形ABCD,正五邊形ABCDE,、…、正n邊形ABCD…,點(diǎn)M、N分別從點(diǎn)B,C開(kāi)始以相同的速度在⊙O上逆時(shí)針運(yùn)動(dòng).
(1)求圖1中∠APN的度數(shù);
(2)求圖2中,∠APN的度數(shù),求圖3中∠BPN的度數(shù);
(3)試探索∠APN的度數(shù)與正多邊形邊數(shù)n的關(guān)系(直接寫(xiě)答案).
【答案】(1)∠APN=60°;(2)90°;108°;(3).
【解析】
(1)由△ABC為等邊三角形可知∠ABC=60°,再由等速運(yùn)動(dòng)可得到∠ABP=∠NBC,再利用外角的性質(zhì)可得∠APN=∠ABP+∠BAP,代換可得到∠APN=∠ABC,可求得∠APN的度數(shù);
(2)和(1)同理可得到∠APN的度數(shù)和∠ABC的度數(shù)相等,圖③中∠APN的度數(shù)和∠ABC的度數(shù)相等;
(3)結(jié)合(1)(2)可得到∠APN的度數(shù)等于多邊形的內(nèi)角的度數(shù),可得到結(jié)論.
(1)圖1:∵點(diǎn)M、N分別從點(diǎn)B. C開(kāi)始以相同的速度在O上逆時(shí)針運(yùn)動(dòng),
∴劣弧BM=劣弧CN
∴∠BAM=∠CBN,
∵∠APN=∠BPM,
∴∠APN=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;
(2)同理:圖2中,∠APN=∠ABC=90°;圖3中,∠APN=∠ABC=108°;
(3)由(1)、(2)可知,
60°=,90°=,108°=,
∴∠APN=它所在的正多邊形的內(nèi)角度數(shù),
∴在圖n中,∠APN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱(chēng)點(diǎn)P為完美點(diǎn).已知二次函數(shù)的圖象上有且只有一個(gè)完美點(diǎn),且當(dāng)時(shí),函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與x軸交于點(diǎn)A,與y軸交于B點(diǎn),拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),在第一象限的拋物線(xiàn)上取一點(diǎn)D,過(guò)點(diǎn)D作DC⊥x軸于點(diǎn)C,交直線(xiàn)AB于點(diǎn)E.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式
(2)是否存在點(diǎn)D,使得△BDE和△ACE相似?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,F是第一象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn)(不與點(diǎn)D重合),點(diǎn)G是線(xiàn)段AB上的動(dòng)點(diǎn).連接DF,FG,當(dāng)四邊形DEGF是平行四邊形且周長(zhǎng)最大時(shí),請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)社會(huì)的發(fā)展,人民對(duì)于美好生活的追求越來(lái)越高.某社區(qū)為了了解家庭對(duì)于文化教育的消費(fèi)情況,隨機(jī)抽取部分家庭,對(duì)每戶(hù)家庭的文化教育年消費(fèi)金額進(jìn)行問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
組別 | 家庭年文化教育消費(fèi)金額x(元) | 戶(hù)數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | 27 |
C | 10000<x≤15000 | m |
D | 15000<x≤20000 | 33 |
E | x>20000 | 30 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:
(1)本次被調(diào)查的家庭有 戶(hù),表中m= ;
(2)請(qǐng)說(shuō)明本次調(diào)查數(shù)據(jù)的中位數(shù)落在哪一組?
(3)在扇形統(tǒng)計(jì)圖中,D組所在扇形的圓心角為多少度?
(4)這個(gè)社區(qū)有2500戶(hù)家庭,請(qǐng)你估計(jì)年文化教育消費(fèi)在10000元以上的家庭有多少戶(hù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(3,4)的拋物線(xiàn)y=ax2+bx+4與x軸交于點(diǎn)B(﹣1,0),與y軸交于點(diǎn)C,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D.
(1)求拋物線(xiàn)的解析式.
(2)如圖1,點(diǎn)P是直線(xiàn)AB上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接PD交AB于點(diǎn)Q,連接AP,當(dāng)S△AQD=2S△APQ時(shí),求點(diǎn)P的坐標(biāo).
(3)如圖2,G是線(xiàn)段OC上一個(gè)動(dòng)點(diǎn),連接DG,過(guò)點(diǎn)G作GM⊥DG交AC于點(diǎn)M,過(guò)點(diǎn)M作射線(xiàn)MN,使∠NMG=60°,交射線(xiàn)GD于點(diǎn)N;過(guò)點(diǎn)G作GH⊥MN,垂足為點(diǎn)H,連接BH.請(qǐng)直接寫(xiě)出線(xiàn)段BH的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注.某校學(xué)生會(huì)為了了解垃圾分類(lèi)知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類(lèi),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機(jī)抽取2人在全校做垃圾分類(lèi)知識(shí)交流,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,OD⊥AC于點(diǎn)D,連接BD,半徑OE⊥BC,連接EA,EA⊥BD于點(diǎn)F.若OD=2,則BC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)出二次函數(shù)的圖象.
(1)利用圖象求方程的近似很(結(jié)渠精確到);
(2)設(shè)該拋物線(xiàn)的頂點(diǎn)為M,它與直線(xiàn)y=-3的兩個(gè)交點(diǎn)分別為C、D,求△MCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某飛機(jī)著陸后滑行的距離y(米)關(guān)于著陸后滑行的時(shí)間x(秒)的函數(shù)關(guān)系是y=﹣2x2+bx(b為常數(shù)).若該飛機(jī)著陸后滑行20秒才停下來(lái),則該型飛機(jī)著陸后的滑行距離是_____米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com