【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與x軸的交點(diǎn)坐標(biāo)是;頂點(diǎn)坐標(biāo)是;
(2)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.

x

y

【答案】
(1)(3,0)、(﹣1,0);(1,﹣4)
(2)-1;0;1;2;3;0;-3;4;-3;0
【解析】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,
則頂點(diǎn)為(1,﹣4),
當(dāng)y=0時(shí),x2﹣2x﹣3=0,
(x﹣3)(x+1)=0,
x1=3,x2=﹣1,
則與x軸的交點(diǎn)坐標(biāo)是(3,0)、(﹣1,0);
所以答案是:(3,0)、(﹣1,0);(1,﹣4);(2)列表如下:


【考點(diǎn)精析】根據(jù)題目的已知條件,利用拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+4x+3交x軸于A、B兩點(diǎn),(A在B左側(cè)),交y軸于點(diǎn)C.

(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)求拋物線的對(duì)稱軸及頂點(diǎn)坐標(biāo).
(3)拋物線上是否存在點(diǎn)F,使△ABF的面積為1?若存在,求F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點(diǎn).

(1)求BC的長(zhǎng);
(2)過(guò)點(diǎn)D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是長(zhǎng)方體紙盒的平面展開(kāi)圖,設(shè) AB=x cm,若 AD =4x cm,AN=3x cm.

(1)求長(zhǎng)方形 DEFG 的周長(zhǎng)與長(zhǎng)方形 ABMN 的周長(zhǎng)(用字母 x 進(jìn)行表示);

(2)若長(zhǎng)方形 DEFG 的周長(zhǎng)比長(zhǎng)方形 ABMN 的周長(zhǎng)少 8cm,求 x 的值;

(3)在第(2)問(wèn)的條件下,求原長(zhǎng)方體紙盒的容積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射擊隊(duì)教練為了了解隊(duì)員訓(xùn)練情況,從隊(duì)員中選取甲、乙兩名隊(duì)員進(jìn)行射擊測(cè)試,相同條件下各射靶5次,成績(jī)統(tǒng)計(jì)如下:

1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是 環(huán),乙命中環(huán)數(shù)的眾數(shù)是 環(huán);

2)試通過(guò)計(jì)算說(shuō)明甲、乙兩人的成績(jī)誰(shuí)比較穩(wěn)定?

3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績(jī)的方差會(huì) .(填 變大、變小 不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為的大正方形,兩塊是邊長(zhǎng)都為的小正方形,五塊是長(zhǎng)為、寬為的全等小矩形,且> .(以上長(zhǎng)度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個(gè)正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PEBC,PFCD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個(gè)結(jié)論

AP=EF;②∠PFE=BAP;PD=EC;④△APD一定是等腰三角形.

其中正確的結(jié)論有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,畫一個(gè)長(zhǎng)和寬分別為的長(zhǎng)方形,并將其按一定的方式進(jìn)行旋轉(zhuǎn).

你能得到幾種不同的圓柱體?

把一個(gè)平面圖形旋轉(zhuǎn)成幾何體,必須明確哪兩個(gè)條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個(gè)頂點(diǎn)A為頂點(diǎn),且過(guò)對(duì)角頂點(diǎn)C的拋物線,稱為這個(gè)正方形的以A為頂點(diǎn)的對(duì)角拋物線.
(1)在平面直角坐標(biāo)系xOy中,點(diǎn)在軸正半軸上,點(diǎn)C在y軸正半軸上.
①如圖1,正方形OABC的邊長(zhǎng)為2,求以O(shè)為頂點(diǎn)的對(duì)角拋物線;
②如圖2,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為a,其以O(shè)為頂點(diǎn)的對(duì)角拋物線的解析式為y= x2 , 求a的值;

(2)如圖3,正方形ABCD的邊長(zhǎng)為4,且點(diǎn)A的坐標(biāo)為(3,2),正方形的四條對(duì)角拋物線在正方形ABCD內(nèi)分別交于點(diǎn)M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對(duì)角線的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案