【題目】如圖,一個半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運(yùn)動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2

【答案】C
【解析】如圖,當(dāng)圓形紙片運(yùn)動到與A的兩邊相切的位置時,

過圓形紙片的圓心O1作兩邊的垂線,垂足分別為D,E,
連接AO1,則RtADO1中,O1AD=30,O1D=r,AD=r,
∴SADO1=O1DAD=r2,由此S四邊形ADO1E=2SADO1=r2,
∵由題意,DO1E=120,得S扇形O1DE=r2
∴圓形紙片“不能接觸到的部分”的面積是3(r2-r2)=()r2 .
所以答案是:C.
【考點精析】認(rèn)真審題,首先需要了解切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種動物的身高ydm)是其腿長xdm)的一次函數(shù).當(dāng)動物的腿長為6dm時,身高為45.5dm;當(dāng)動物的腿長為14dm時,身高為105.5dm

1)寫出yx之間的關(guān)系式;

2)當(dāng)該動物腿長10dm時,其身高為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時,CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DAB上的一點,且AD2BD,EBC的中點,CD、AE相交于點F.若EFC的面積為1,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號).①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)幾何的一個重要方法就是要學(xué)會抓住基本圖形,讓我們來做一次研究性學(xué)習(xí).

1)如圖①所示的圖形,像我們常見的學(xué)習(xí)用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說明理由:

2)如圖②,若ABC中,BO平分∠ABCCO平分∠ACB,且它們相交于點O,試探究∠BOC與∠A的關(guān)系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點O,請直接寫出∠BOC與∠A的關(guān)系式為    _

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點,與x軸的另一個交點為(2,0),將拋物線C1向右平移m(m>0)個單位得到拋物線C2 , C2交x軸于A,B兩點(點A在點B的左邊),交y軸于點C.
(1)求拋物線C1的解析式及頂點坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點P,使△ PAC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在疫情期間利用網(wǎng)絡(luò)組織了一次防“新冠病毒”知識競賽,評出特等獎10人,優(yōu)秀獎20人.學(xué)校決定給所有獲獎學(xué)生各發(fā)一份獎品,同一等次的獎品相同.

1)(列方程組解應(yīng)用題)若特等獎和優(yōu)秀獎的獎品分別是口罩和溫度計,口罩單價的2倍與溫度計單價的3倍相等,購買這兩種獎品一共花費(fèi)700元,求口罩和溫度計的單價各是多少元?

2)(利用不等式或不等式組解應(yīng)用題)若兩種獎品的單價都是整數(shù),且要求特等獎單價比優(yōu)秀獎單價多20元.在總費(fèi)用不少于440而少于500元的前提下,購買這兩種獎品時它們的單價有幾種情況,請分別求出每種情況特等獎和優(yōu)秀獎獎品的單價.

查看答案和解析>>

同步練習(xí)冊答案