【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BDAM,垂足為DBD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B60°

1)求證:AM是⊙O的切線;

2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).

【答案】(1)見解析;(2

【解析】

1)根據(jù)題意,可得BOC的等邊三角形,進(jìn)而可得∠BCO=∠BOC,根據(jù)角平分線的性質(zhì),可證得BDOA,根據(jù)∠BDM90°,進(jìn)而得到∠OAM90°,即可得證;

2)連接AC,利用AOC是等邊三角形,求得∠OAC60°,可得∠CAD30°,在直角三角形中,求出CD、AD的長,則S陰影S梯形OADCS扇形OAC即可得解.

1)證明:∵∠B60°,OBOC

∴△BOC是等邊三角形,

∴∠1=∠360°

OC平分∠AOB,

∴∠1=∠2,

∴∠2=∠3,

OABD

∵∠BDM90°,

∴∠OAM90°,

OA為⊙O的半徑,

AM是⊙O的切線

2)解:連接AC

∵∠360°,OAOC

∴△AOC是等邊三角形,

∴∠OAC60°

∴∠CAD30°,

OCAC4

CD2,

AD2

S陰影S梯形OADCS扇形OAC ×4+2×2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

(1)求直線AB的解析式;

(2)觀察圖象,當(dāng)時,直接寫出的解集;

(3)若點(diǎn)P是軸上一動點(diǎn),當(dāng)△COD與△ADP相似時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3)B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊三角形ABC折疊,使得點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF,點(diǎn)EF分別在ABAC邊上.若AB6,BD2,則AEAF的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,于點(diǎn),于點(diǎn)邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時,.請將正確結(jié)論的序號填在橫線上__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于AC兩點(diǎn),與直線yx1交于AB兩點(diǎn),直線AB與拋物線的對稱軸交于點(diǎn)E

(1)求拋物線的解板式.

(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動,若△ABP的面積最大,求此時點(diǎn)P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請直接寫出符合條件點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,B的坐標(biāo)分別為(-4,5),(-2,1).

(1)寫出點(diǎn)C及點(diǎn)C關(guān)于y軸對稱的點(diǎn)C的坐標(biāo);

(2)請作出△ABC關(guān)于y軸對稱的△ABC′;

(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案