【題目】問(wèn)題:要將一塊直徑為的半圓形鐵皮加工成一個(gè)圓柱的兩個(gè)底面和一個(gè)圓錐的底面.

操作:

方案一:在圖中,設(shè)計(jì)一個(gè)圓錐底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫(huà)示意圖);

方案二:在圖中,設(shè)計(jì)一個(gè)圓柱兩個(gè)底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫(huà)示意圖).

探究:

求方案一中圓錐底面的半徑;

求方案二中半圓圓心為,圓柱兩個(gè)底面圓心為、,圓錐底面的圓心為,試判斷以、、為頂點(diǎn)的四邊形是什么樣的特殊四邊形,并加以證明.

【答案】見(jiàn)解析

【解析】

(1)當(dāng)圓錐的底面與半圓內(nèi)切,且與直徑相切時(shí),圓錐底面面積最大,而兩個(gè)圓柱的底面分別與圓錐底面外切,且與半圓內(nèi)切,與半圓的直徑相切;

(2)當(dāng)兩個(gè)圓柱的底面外切,且分別與半圓內(nèi)切,與半圓的直徑相切時(shí),圓柱的底面面積最大,此時(shí)圓錐底面與半圓內(nèi)切,又與兩個(gè)圓柱底面外切,由圓的對(duì)稱(chēng)性質(zhì),可知得到以、、、為頂點(diǎn)的四邊形是正方形.

如圖,當(dāng)圓錐的底面與半圓內(nèi)切且與直徑相切時(shí),圓錐底面面積最大,故圓錐的直徑是半圓的半徑,所以圓錐的半徑是

如圖,當(dāng)兩個(gè)圓柱的底面外切,且分別與半圓內(nèi)切,與半圓的直徑相切時(shí),圓柱的底面面積最大,由于該圖是關(guān)于成軸對(duì)稱(chēng)圖形,且扇形順時(shí)旋轉(zhuǎn)度后,能與圖形也能重合,故有四邊形的四邊相等,四角為直角,所以是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+cx軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線(xiàn)y=﹣x+2經(jīng)過(guò)點(diǎn)A,C

(1)求拋物線(xiàn)的解析式;

(2)點(diǎn)P為直線(xiàn)AC上方拋物線(xiàn)上一動(dòng)點(diǎn).

①連接PO,交AC于點(diǎn)E,求的最大值;

②過(guò)點(diǎn)PPFAC,垂足為點(diǎn)F連接PC,是否存在點(diǎn)P,使△PFC中的一個(gè)角等于∠CAB2倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線(xiàn)交AC所在直線(xiàn)于點(diǎn)F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫(huà)出變換后的圖形,并直接寫(xiě)出你在(1)中猜想的結(jié)論是否仍然成立;

(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫(xiě)出證明過(guò)程;若不成立,請(qǐng)寫(xiě)出AF、EF與DE之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)DBC邊上,點(diǎn)EAC的延長(zhǎng)線(xiàn)上,DEDA

(1)求證:∠BAD=∠EDC;

(2)作出點(diǎn)E關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)M,連接DM、AM,猜想DMAM的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,與⊙相切于點(diǎn),為⊙的弦,,相交于點(diǎn).

(1)求證:;

(2),,求線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,陰影部分面積為的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店將每件進(jìn)價(jià)元的某種商品按每件元出售,一天可銷(xiāo)出約件,該店想通過(guò)降低售價(jià),增加銷(xiāo)售量的辦法來(lái)提高利潤(rùn),經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低元,其銷(xiāo)售量可增加約件.

將這種商品每件的售價(jià)降低多少時(shí),能使商店的銷(xiāo)售利潤(rùn)為元?

這種商品的售價(jià)降低多少時(shí),才能使商店的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知排球場(chǎng)的長(zhǎng)度OD18 m,位于球場(chǎng)中線(xiàn)處球網(wǎng)的高度AB2.4 m,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.6 mC點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE6 m時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系

(1) 當(dāng)球上升的最大高度為3.4 m時(shí),對(duì)方距離球網(wǎng)0.4 m的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1 m,問(wèn)這次她是否可以攔網(wǎng)成功?請(qǐng)通過(guò)計(jì)算說(shuō)明

(2) 若隊(duì)員發(fā)球既要過(guò)球網(wǎng),又不出邊界,問(wèn)排球飛行的最大高度h的取值范圍是多少?(排球壓線(xiàn)屬于沒(méi)出界)

查看答案和解析>>

同步練習(xí)冊(cè)答案