【題目】某工廠計劃招聘兩個工種的工人共120人,兩個工種的工人月工資分別為3200元和4000元.
(1)若某工廠每月支付工人的工資為440000元,那么兩個工種的工人各招聘多少人?設(shè)招聘工種的工人人,填寫下表,并列方程求解;
工種 | 工人每月工資(元) | 招聘人數(shù) | 工廠應(yīng)付工人的 工資(元) |
3200 | |||
4000 |
(2)設(shè)工廠每月支付工人的工資為元,試寫出與之間的函數(shù)表達式,若要求工種的人數(shù)不少于工種人數(shù)的2倍,那么招聘工種的工人多少人時,可使工廠每月支付的工人工資最少?
【答案】(1)工種工人招聘50人,工種工人招聘70人;(2)招聘工種工人40人時,可使工廠每月支付的工人工資最少.
【解析】
(1)根據(jù)題意可以求得表格應(yīng)填寫的式子,然后列出相應(yīng)的方程即可解答本題;
(2)根據(jù)題意可以寫出y與x的函數(shù)表達式,然后根據(jù)B工種的人數(shù)不少于A工種人數(shù)的2倍,可以求得x的取值范圍,從而可以解答本題.
解:(1)設(shè)招聘A工種的工人x人,則工廠應(yīng)付A工種工人的工資為3200x元,招聘B工種工人(120x)人,工廠應(yīng)付B種工人4000(120x)元,
故答案為:,,.
由題意得,.
解得:,
∴,
答:工種工人招聘50人,工種工人招聘70人.
(2)由題意可得,.
∴.
∵,解得:,
由題意,
∴.
∵,
∴隨的增大而減小,
∴當(dāng)時,取得最小值.
答:招聘工種工人40人時,可使工廠每月支付的工人工資最少.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調(diào)運才能使總運費最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,點從出發(fā)沿方向在運動速度為3個單位/秒,點從出發(fā)向點運動,速度為1個單位/秒,、同時出發(fā),點到點時兩點同時停止運動.
(1)點在線段上運動,過作交邊于,時,求的值;
(2)運動秒后,,求此時的值;
(3)________時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,AO是∠BAC的平分線,與AB的垂直平分線DO交于點O,∠ACB沿EF折疊后,點C 剛好與點O重合.下列結(jié)論錯誤的是( )
A.AO=COB.∠ECO=∠FCOC.EF⊥OCD.∠BFO=2∠FOC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2kx﹣k2+k+3(k為常數(shù))的頂點縱坐標(biāo)為4.
(1)求k的值;
(2)設(shè)拋物線與直線y=﹣(x﹣3)(m≠0)兩交點的橫坐標(biāo)為x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)兩點在動點M(m,n)所形成的曲線上,求直線AB的解析式;
(3)將(2)中的直線AB繞點(3,0)順時針旋轉(zhuǎn)45°,與拋物線x軸上方的部分相交于點C,請直接寫出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)字-1,-2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是________;
(2)請用列表或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結(jié)果;
(3)若規(guī)定:點P(x,y)在第一象限或第三象限小紅獲勝,點P(x,y)在第二象限或第四象限小穎獲勝,請分別求出兩人獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地之間有條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達,現(xiàn)在新建了橋EF,可直接沿直線AB從A地到達B地.已知BC=11km,∠A=45°,∠B=37°,橋DC和AB平行,橋DC與橋EF的長相等.
(1)求點D到直線AB的距離;
(2)現(xiàn)在從A地到B地可比原來少走多少路程?
(結(jié)果保留小數(shù)點后一位.參考數(shù)據(jù):≈1.41,sin37°≈0.60,cos37°≈0.80).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:
下列結(jié)論:(1)ac<0;(2)當(dāng)x>1時,y的值隨x值的增大而減。3)3是方程ax2+(b)x+c=0的一個根;(4)當(dāng)<x<3時,ax2+(b)x+c>0.其中正確的個數(shù)為( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,,點在邊上,且,以點為圓心,為半徑在其左側(cè)作半圓,分別交)于點,交的延長線于點.
(1) ;
(2)如圖2,將半圓繞點逆時針旋轉(zhuǎn),點的對應(yīng)點為,點的對應(yīng)點為;設(shè)為半圓上一點.
①當(dāng)點落在邊上時,求點與線段之間的最短距離;
②當(dāng)半圓交于兩點時,若的長為,求此時半圓與正方形重疊部分的面積;
③當(dāng)半圓與正方形的邊相切時,設(shè)切點為,直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com