【題目】如圖,菱形ABCD的邊長為20cm,∠ABC120°.動點(diǎn)PQ同時從點(diǎn)A出發(fā),其中P4cm/s的速度,沿ABC的路線向點(diǎn)C運(yùn)動;Q2cm/s的速度,沿AC的路線向點(diǎn)C運(yùn)動.當(dāng)P、Q到達(dá)終點(diǎn)C時,整個運(yùn)動隨之結(jié)束,設(shè)運(yùn)動時間為t秒.

1)在點(diǎn)P、Q運(yùn)動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;

2)若點(diǎn)Q關(guān)于菱形ABCD的對角線交點(diǎn)O的對稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N

①當(dāng)t為何值時,點(diǎn)P、M、N在一直線上?

②當(dāng)點(diǎn)P、M、N不在一直線上時,是否存在這樣的t,使得PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

【答案】1) 若0t≤5,則AP4t,AQ2t. 則 ==,

∵ AO10,AB20,==.∴ =,

∠CAB30°,∴ △APQ∽△ABO∴ ∠AQP90°,即PQ⊥AC. ………………4

當(dāng)5﹤t≤10時,同理可由△PCQ∽△BCO 可得∠PQC90°,即PQ⊥AC(考慮一種情況即可)

在點(diǎn)P、Q運(yùn)動過程中,始終有PQ⊥AC.

2如圖,在RtAPM中,易知AM=,又AQ2t

QM204t.

AQQMAM 2t204t

解得t=,當(dāng)t=時,點(diǎn)P、M、N在一直線上. …………………………8

存在這樣的t,使△PMN是以PN為一直角邊的直角三角形.

設(shè)lACH.

如圖1,當(dāng)點(diǎn)NAD上時,若PN⊥MN,則∠NMH30°.

∴ MH2NH,得 204t-=解得t2, …………………10

如圖2,當(dāng)點(diǎn)NCD上時,若PM⊥MN,則∠HMP30°.∴ MH2PH,同理可得t.

故 當(dāng)t2或 時,存在以PN為一直角邊的直角三角形. …………………12

【解析】

1)此問需分兩種情況,當(dāng)0t≤55t≤10兩部分分別討論得PQ⊥AC

2由于點(diǎn)PM、N在一直線上,則AQ+QM=AM,代入求得t的值.

假設(shè)存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形,但是需分點(diǎn)NAD上時和點(diǎn)NCD上時兩種情況分別討論.

解答:解:(1)若0t≤5,則AP=4t,AQ=2t

==,

∵AO=10,AB=20,==

=.又∠CAB=30°,∴△APQ∽△ABO

∴∠AQP=90°,即PQ⊥AC

當(dāng)5t≤10時,同理,可由△PCQ∽△BCO∠PQC=90°,即PQ⊥AC

在點(diǎn)PQ運(yùn)動過程中,始終有PQ⊥AC

2如圖,在Rt△APM中,∵∠PAM=30°,AP=4t,

∴AM=

△APQ中,∠AQP=90°,

∴AQ=AP?cos30°=2t,

∴QM=AC-2AQ=20-4t

AQ+QM=AM得:2t+20-4

t=,

解得t=

當(dāng)t=時,點(diǎn)P、MN在一直線上.

存在這樣的t,使△PMN是以PN為一直角邊的直角三角形.

設(shè)lACH

如圖1,當(dāng)點(diǎn)NAD上時,若PN⊥MN,則∠NMH=30°

∴MH=2NH.得20-4t-t=2×,解得t=2

如圖2,當(dāng)點(diǎn)NCD上時,若PM⊥PN,則∠HMP=30°

∴MH=2PH,同理可得t=

故當(dāng)t=2時,存在以PN為一直角邊的直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水龍頭關(guān)閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關(guān)系圖象,請結(jié)合圖象解答下列問題:

(1)容器內(nèi)原有水多少?

(2)求Wt之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實黨中央長江大保護(hù)新發(fā)展理念,我市持續(xù)推進(jìn)長江岸線保護(hù),還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負(fù)責(zé)對一面積為33000平方米的非法砂石碼頭進(jìn)行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊增加了人力和設(shè)備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實際平均每天施工多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點(diǎn)E,PDE上的一點(diǎn)(PEPD),PMPD,PMAD邊于點(diǎn)M.

(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PFPN,且點(diǎn)N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當(dāng)點(diǎn)FCD邊的延長線上時,仍然滿足PFPN,此時點(diǎn)N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線,于點(diǎn),于點(diǎn),連接于點(diǎn)

探究:判斷的形狀,并說明理由;

發(fā)現(xiàn):之間有怎樣的數(shù)量關(guān)系,請直接寫出你的結(jié)論,不必說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃河是中華民族的象征,被譽(yù)為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學(xué)記數(shù)法表示為( 。

A. 6.06×104立方米/ B. 3.136×106立方米/

C. 3.636×106立方米/ D. 36.36×105立方米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,8為半徑的圓與軸交于,兩點(diǎn),過作直線軸負(fù)方向相交成的角,且交軸于點(diǎn),以點(diǎn)為圓心的圓與軸相切于點(diǎn).

(1)求直線的解析式;

(2)將以每秒1個單位的速度沿軸向左平移,當(dāng)第一次與外切時,求平移的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一長方形紙片放在平面直角坐標(biāo)系中,,,,動點(diǎn)從點(diǎn)出發(fā)以每秒1個單位長度的速度沿向終點(diǎn)運(yùn)動,運(yùn)動秒時,動點(diǎn)從點(diǎn)出發(fā)以相同的速度沿向終點(diǎn)運(yùn)動,當(dāng)點(diǎn)、其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.

設(shè)點(diǎn)的運(yùn)動時間為:(秒)

1_________,___________(用含的代數(shù)式表示)

2)當(dāng)時,將沿翻折,點(diǎn)恰好落在邊上的點(diǎn)處,求點(diǎn)的坐標(biāo)及直線的解析式;

3)在(2)的條件下,點(diǎn)是射線上的任意一點(diǎn),過點(diǎn)作直線的平行線,與軸交于點(diǎn),設(shè)直線的解析式為,當(dāng)點(diǎn)與點(diǎn)不重合時,設(shè)的面積為,求之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案