【題目】將一副三角板中的兩個直角頂點疊放在一起(如圖①),其中,.

(1)猜想的數(shù)量關(guān)系,并說明理由;

(2)若,求的度數(shù);

(3)若按住三角板不動,繞頂點轉(zhuǎn)動三角,試探究等于多少度時,并簡要說明理由.

【答案】(1),理由詳見解析;(2135°;(3等于時,.

【解析】

1)依據(jù)∠BCD=ACB+ACD=90°+ACD,即可得到∠BCD+ACE的度數(shù);

2)設(shè)∠ACE=,則∠BCD=3,依據(jù)∠BCD+ACE=180°,即可得到∠BCD的度數(shù);

3)分兩種情況討論,依據(jù)平行線的性質(zhì),即可得到當(dāng)∠BCD等于150°或30°時,CE//4B.

解:(1,理由如下:

,

;

2)如圖①,設(shè),則,

由(1)可得,

,

,

3)分兩種情況:

①如圖1所示,當(dāng)時,,

;

②如圖2所示,當(dāng)時,,

.

綜上所述,等于時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求作圖,不要求寫做法,但要保留作圖痕跡.

1)如圖1,四邊形ABCD是平行四邊形,EBC上任意一點,請只用直尺(不帶刻度)在邊AD上找點F,使DF=BE

2)如圖2,BE是菱形ABCD的邊AD上的高,請只用直尺(不帶刻度)作出菱形ABCD的邊AB上的高DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+mx+2m﹣7的圖象經(jīng)過點(1,0).

1)求拋物線的表達式;

2)把﹣4x1時的函數(shù)圖象記為H,求此時函數(shù)y的取值范圍;

3)在(2)的條件下,將圖象Hx軸下方的部分沿x軸翻折,圖象H的其余部分保持不變,得到一個新圖象M.若直線y=x+b與圖象M有三個公共點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時到達最大高度4m,設(shè)籃球運行的軌跡為拋物線,籃圈距地面3m

1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?

2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若兩條平行線EFMN與直線AB,CD相交,則圖中共有同旁內(nèi)角的對數(shù)為( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某博物館每周都吸引大量中外游客前來參觀,如果游客過多,對館中的珍貴文物會產(chǎn)生不利影響,但同時考慮到文物的修繕和保存費用問題,還要保證一定的門票收入,因此,博物館采取了漲浮門票價格的方法來控制參觀人數(shù),在該方法實施過程中發(fā)現(xiàn):每周參觀人數(shù)與票價之間存在著如圖所示的一次函數(shù)關(guān)系.在這種情況下,如果要保證每周萬元的門票收入,那么每周應(yīng)限定參觀人數(shù)是多少?門票價格應(yīng)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖12,在20×20的等距網(wǎng)格(每格的寬和高均是1個單位長)中,RtABC從點A與點M重合的位置開始,以每秒1個單位長的速度先向下平移,當(dāng)BC邊與網(wǎng)的底部重合時,繼續(xù)同樣的速度向右平移,當(dāng)點C與點P重合時,RtABC停止移動.設(shè)運動時間為x秒,QAC的面積為y

1)如圖1,當(dāng)RtABC向下平移到RtA1B1C1的位置時,請你在網(wǎng)格中畫出RtA1B1C1關(guān)于直線QN成軸對稱的圖形;

2)如圖2,在RtABC向下平移的過程中,請你求出yx的函數(shù)關(guān)系式,并說明當(dāng)x分別取何值時,y取得最大值和最小值?最大值和最小值分別是多少?

3)在RtABC向右平移的過程中,請你說明當(dāng)x取何值時,y取得最大值和最小值?最大值和最值分別是多少?為什么?(說明:在(3)中,將視你解答方法的創(chuàng)新程度,給予14分的加分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,延長使,以為邊作正方形,延長,連接,的中點,連接分別與,交于點.則下列說法:①;②;③;④.其中正確的有(

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案