【題目】1637年笛卡兒(RDescartes,1596-1650)在其《幾何學》中,首次應用待定系數(shù)法最早給出因式分解定理.關(guān)于笛卡爾的“待定系數(shù)法”原理,舉例說明如下:

分解因式:.觀察知,顯然時,原式,因此原式可分解為與另一個整式的積.令:,而,因等式兩邊同次冪的系數(shù)相等,則有:,得,從而

根據(jù)以上材料,理解并運用材料提供的方法,解答以下問題:

1)若是多項式的因式,求的值并將多項式分解因式.

2)若多項式含有因式,求的值.

【答案】1a=0;(2

【解析】

(1)直接對比系數(shù)利用待定系數(shù)法得出答案即可;
(2)由材料可知,x=-1,x=2是方程3x4+ax3+bx-34=0的解,代入求出a,b的值.

1

,解得

;

2)∵多項式含有因式

∴設(shè)(其中為二次整式),

由材料可知,,是方程的解,

∴求得,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,ADBC D(其中 BD>CD),BEAC E,AD BE 相交于點 F,直線 AD △BCF 的外接圓 O 交于點 H,點 M 在圓 O 上,滿足弧 HM= CF,連接 FM

1)求證:AF=CM

2)若∠ABE=45°,FH ,圓O的直徑為,求BF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,二次函數(shù)的圖象與一次函數(shù)的圖象交于AB兩點,點B在點A的右側(cè),直線AB分別交x軸、y軸于C、D兩點,且k0

1)求A,B兩點橫坐標;

2)若△OAB是以OA為腰的等腰三角形,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建文明城市,增弘環(huán)保意識,某班隨機抽取了8名學生(分別為AB,C,D,EF,G,H),進行垃圾分類投放檢測,檢測結(jié)果如下表,其中“√”表示投放正確,“×”表示投放錯誤,

學生

垃圾類別

A

B

C

D

E

F

G

H

可回收物

×

×

×

其他垃圾

×

×

餐廚垃圾

有害垃圾

×

×

×

×

×

1)檢測結(jié)果中,有幾名學生正確投放了至少三類垃圾?請列舉出這幾名學生.

2)為進一步了解學生垃圾分類的投放情況,從檢測結(jié)果是“有害垃圾”投放錯誤的學生中隨機抽取2名進行訪談,求抽到學生A的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘船由港沿北偏東65°方向航行港,然后再沿北偏西40°方向航行至港,港在港北偏東20°方向,則兩港之間的距離為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,開展了第二課堂活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖中的信息解決下列問題:

1)這次抽查的學生人數(shù)是多少人?

2)將條形統(tǒng)計圖補充完整.

3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數(shù).

4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBCABBC4,∠B60°,∠C105°,點EBC的中點,以CE為弦作圓,設(shè)該圓與四邊形ABCD的一邊的交點為P,若∠CPE30°,則EP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MON120°,點A,B分別在ON,OM邊上,且OAOB,點C在線段OB上(不與點O,B重合),連接CA.將射線CA繞點C逆時針旋轉(zhuǎn)120°得到射線CA,將射線BO繞點B逆時針旋轉(zhuǎn)150°與射線CA交于點D

1)根據(jù)題意補全圖1;

2)求證:

①∠OAC=∠DCB;

CDCA(提示:可以在OA上截取OEOC,連接CE);

3)點H在線段AO的延長線上,當線段OH,OC,OA滿足什么等量關(guān)系時,對于任意的點C都有∠DCH2DAH,寫出你的猜想并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)為響應國家教育扶貧的號召,決定對某鄉(xiāng)鎮(zhèn)全體貧困初、高中學生進行資助,初中學生每月資助200元,高中學生每月資助300元.已知該鄉(xiāng)受資助的初中學生人數(shù)是受資助的高中學生人數(shù)的2倍,且該企業(yè)在2018年下半年712月這6個月資助學生共支出10.5萬元.

1)問該鄉(xiāng)鎮(zhèn)分別有多少名初中學生和高中學生獲得了資助?

22018712月期間,受資助的初、高中學生中,分別有30%40%的學生被評為優(yōu)秀學生,從而獲得了該鄉(xiāng)鎮(zhèn)政府的公開表揚.同時,提供資助的企業(yè)為了激發(fā)更多受資助學生的進取心和學習熱情,決定對2019年上半年16月被評為優(yōu)秀學生的初中學生每人每月增加a%的資助,對被評為優(yōu)秀學生的高中學生每人每月增加2a%的資助.在此獎勵政策的鼓勵下,201916月被評為優(yōu)秀學生的初、高中學生分別比2018712月的人數(shù)增加了3a%a%.這樣,2019年上半年評為優(yōu)秀學生的初、高中學生所獲得的資助總金額一個月就達到了10800元,求a的值.

查看答案和解析>>

同步練習冊答案