【題目】如圖,在ABC中,ABAC,AB的垂直平分線交AC于點E,交AB于點D.

(1)∠A40°,求∠CBE的度數(shù);

(2)△BCE的周長為8cm,AB5cm,求BC的長.

【答案】(1)30°(2)3cm

【解析】

1)根據(jù)題意可以推出∠ABC=70°,AE=BE,即可推出∠ABE=A=40°,便可推出∠CBE的度數(shù);

2)根據(jù)題意可以推出ACBC8cm.AB5cm,即可推出BC853cm

解:

(1)ABAC,∠A40°,∴∠ABC70°.

DE垂直平分AB,

AEBE,

∴∠ABE=∠A40°,

∴∠CBE=∠ABC-∠EBA70°40°30°.

(2)∵△BCE的周長為8cm,

BEECBC8cm.

AEBE

AEECBC8cm,

ACBC8cm.

ACAB5cm

BC853cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于一個有理數(shù)x,我們把[x]稱作x的對稱數(shù).

,則[x]=x-2:x<0,則[x]=x+2.例:[1]=1-2=-1[-2]=-2+2=0

1)求[][-1]的值;

(2)已知有理數(shù)a>0.b<0,且滿足[a]=[b],試求代數(shù)式的值:

3)解方程:[2x]+[x+1]=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,ABACADBC邊上的高,點E,F分別是邊AB,AC的中點,且EF∥BC.

1)試說明△AEF是等腰三角形;

2)試比較DEDF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABCAB15,AC13,高AD12,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一次函數(shù)y=(3mx+m5

1)若一次函數(shù)的圖象過原點,求實數(shù)m的值;

2)當一次函數(shù)的圖象經(jīng)過第二、三、四象限時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

給出了結論:
⑴二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
⑵當 時,y<0;
⑶二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側.則其中正確結論的個數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,沿圖示的中位線DE剪一刀,拼成如圖1所示的平行四邊形BCFD.請仿上述方法,按要求完成下列操作設計,并在規(guī)定位置畫出圖示:

(1)在△ABC中,若∠C=90°,沿著中位線剪一刀,可拼成矩形或等腰梯形,請將拼成的圖形畫在圖2位置(只需畫一個);

(2)在△ABC中,若AB=2BC,沿著中位線剪一刀,可拼成菱形,并將拼成的圖形畫在圖3位置;

(3)在△ABC中,需增加什么條件,沿著中位線剪一刀,拼成正方形,并將拼成的圖形和符合條件的三角形一同畫在圖4位置;

(4)在△ABC中,若沿著某條線剪一刀,能拼成等腰梯形,請將拼成的圖形畫在圖5位置(保留尋求剪裁線的痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC邊上的垂直平分線交AC于D,交AB于E,延長DE到F,使BF=CE

(1)四邊形BCEF是平行四邊形嗎?說說你的理由.
(2)當∠A等于多少時,四邊形BCEF是菱形,并說出你的理由.
(3)四邊形BCEF可以是正方形嗎?為什么?

查看答案和解析>>

同步練習冊答案