【題目】如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn),但始終保持EF⊥DE交BC于點(diǎn)F.
(1)求證:△ADE∽△BEF;
(2)若正方形的邊長(zhǎng)為4,設(shè)AE=x,BF=y,求y與x之間的函數(shù)解析式;
(3)當(dāng)x取何值時(shí),y有最大值?并求出這個(gè)最大值.
【答案】(1)證明見解析;(2) ;(3)當(dāng)時(shí), 取得最大值, .
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)及余角的性質(zhì)得出△ADE與△BEF的兩對(duì)應(yīng)角相等,從而得出△ADE∽△BEF;
(2)根據(jù)相似三角形的性質(zhì)得出y關(guān)于x的函數(shù)解析式及函數(shù)的定義域;
(3)利用配方法,即可解決問題;
試題解析:
(1)∵ 四邊形ABCD是正方形,
∴ ∠A=∠B=90°,∴ ∠1+∠2=90°,
又∵,∴ ∠2+∠3=90°,∴ ∠1=∠3 ,
∴ ∽;
(2)依題意知:AB=AD=4,
∵,∴ BE= ,
由(1)知∽, ∴ ,
即 ,
∴ ,
即 ;
(3)∵ ,
∴ 當(dāng)時(shí), 取得最大值, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(-6,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=45°時(shí),點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):
如圖,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長(zhǎng)AF交CD于點(diǎn)G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.
(2)類比探究:
如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動(dòng)點(diǎn),直線OF交BC于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)設(shè)四邊形ABEF的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)如圖2,過點(diǎn)F作FM⊥x軸,垂足為M,交直線AC于P,過點(diǎn)P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E,連接AE,DF.
求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的邊BC在x軸上,頂點(diǎn)A在y軸的正半軸上,OA=2,OB=1,OC=4.
(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)點(diǎn)M是x軸上的動(dòng)點(diǎn),試問:在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)N的坐標(biāo);若不存在,說明理由;
(3)若拋物線對(duì)稱軸交x軸于點(diǎn)P,在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△PAQ是以PA為腰的等腰直角三角形?若存在,寫出所有符合條件的點(diǎn)Q的坐標(biāo),選擇一種情況加以說明;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角中,是邊上的高. ,且.連接,交的延長(zhǎng)線于點(diǎn),連接.下列結(jié)論:①;②;③;④.其中一定正確的個(gè)數(shù)是( )
A.個(gè)B.個(gè)
C.個(gè)D.個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com