【題目】如圖1,△ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)試說明△ABC是等腰三角形;

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒2cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以每秒1cm速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設點M運動的時間為t(秒),

①若△DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

1 2 備用圖

【答案】1)見詳解;(2)①t值為:s6s;②t值為:4.55

【解析】

1)設BD=2x,AD=3x,CD=4x,則AB=5x,由勾股定理求出AC,即可得出結論;

2)由△ABC的面積求出BD、ADCD、AC;①當MNBC時,AM=AN;當DNBC時,AD=AN;得出方程,解方程即可;

②根據(jù)題意得出當點MDA上,即2t5時,△MDE為等腰三角形,有3種可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分別得出方程,解方程即可.

解:(1)證明:設BD=2x,AD=3x,CD=4x,則AB=5x

Rt△ACD中,AC=5x

AB=AC,

∴△ABC是等腰三角形;

2)解:由(1)知,AB=5x,CD=4x,

SABC=×5x×4x=40cm2,而x0,

x=2cm,

BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm

由運動知,AM=10-2t,AN=t,

①當MNBC時,AM=AN,

10-2t=t

;

DNBC時,AD=AN,

6=t

得:t=6;

∴若△DMN的邊與BC平行時,t值為s6s

②存在,理由:

Ⅰ、當點MBD上,即0≤t2時,△MDE為鈍角三角形,但DM≠DE;

Ⅱ、當t=2時,點M運動到點D,不構成三角形

Ⅲ、當點MDA上,即2t≤5時,△MDE為等腰三角形,有3種可能.

∵點E是邊AC的中點,

DE=AC=5

DE=DM,則2t-4=5,

t=4.5s;

ED=EM,則點M運動到點A,

t=5s;

MD=ME=2t-4,

如圖,過點EEF垂直ABF,

ED=EA,

DF=AF=AD=3

Rt△AEF中,EF=4;

BM=2t,BF=BD+DF=4+3=7,

FM=2t-7

Rt△EFM中,(2t-42-2t-72=42,

t=

綜上所述,符合要求的t值為4.55

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為6 cm的等邊三角形,動點PA出發(fā),以3 cm/s的速度,沿A-B-CC運動,同時,動點QC出發(fā)沿CA方向以1 cm/s的速度向A運動,當其中一點運動到終點時,兩點同時停止運動.設運動時間為t秒,當t= ____s,△APQ是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DE是△ABC內(nèi)的兩點,AD平分∠BAC,∠EBC=E=60°.若BE=7cm,DE=2cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的圖像與x軸交于B,C兩點(BC的左側),與y軸交于點A。

(1)求出點A,B,C的坐標。

(2)向右平移拋物線,使平移后的拋物線恰好經(jīng)過△ABC的外心,求出平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.

(1)求一次至少購買多少只計算器,才能以最低價購買?

(2)求寫出該文具店一次銷售x(x10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10x50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角三角形ABC中,AB3,BC4AC5

1)在圖①中畫一直線將ABC分割成兩個等腰三角形;

2)現(xiàn)有一點PQABC的邊上運動,請在備用圖上畫出APQ有一邊為2的等腰三角形的四種情況.

要求:1、用有刻度的直尺簡單作圖,并在所畫等腰三角形中邊長為2的邊上標注數(shù)字2即可,2即為線段BC長度的一半;2、形狀一樣的算一種圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MNAB于點D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解學生對新聞、體育、娛樂、動畫四類電視節(jié)目的喜愛情況,進行了統(tǒng)計調(diào)查隨機調(diào)查了某班所有同學最喜歡的節(jié)目每名學生必選且只能選擇四類節(jié)目中的一類并將調(diào)查結果繪成如下不完整的統(tǒng)計圖根據(jù)兩圖提供的信息,回答下列問題:

最喜歡娛樂類節(jié)目的有______人,圖中______;

請補全條形統(tǒng)計圖;

根據(jù)抽樣調(diào)查結果,若該校有1800名學生,請你估計該校有多少名學生最喜歡娛樂類節(jié)目;

在全班同學中,有甲、乙、丙、丁等同學最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學中選取2人參加學校組織的體育知識競賽,請用列表法或樹狀圖求同時選中甲、乙兩同學的概率.

查看答案和解析>>

同步練習冊答案