如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.

理由如下:∵AD⊥BC于D,EG⊥BC于G,( 已知 )
∴∠ADC=∠EGC=90°,(                        )
∴AD∥EG,(                                )
∴∠1=∠2,(                              )
      =∠3,(                             )
又∵∠E=∠1,(        )
∴∠2=∠3 (                              )       
∴AD平分∠BAC.(                                       )
垂直的定義;同位角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同位角相等;已知;等量代換;角平分線定義

試題分析:根據(jù)垂直的定義、平行線的判定和性質(zhì)、角平分線的性質(zhì)依次分析即可.
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( 垂直的定義 
∴AD∥EG,( 同位角相等,兩直線平行 
∴∠1=∠2,( 兩直線平行,內(nèi)錯(cuò)角相等 
E=∠3,( 兩直線平行,同位角相等 
又∵∠E=∠1( 已知 
∴∠2=∠3( 等量代換 
∴AD平分∠BAC( 角平分線定義 ).
點(diǎn)評(píng):平行線的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某城市的兩座高樓頂部各裝有一個(gè)射燈,如圖,當(dāng)光柱相交在同一個(gè)平面時(shí),∠1+∠2+∠3=__________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AE與FC會(huì)平行嗎?說(shuō)明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若一個(gè)角的余角比這個(gè)角的補(bǔ)角的一半小20°,則這個(gè)角的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖,已知∠BAC+∠ACD=180°,AE平分∠BAC,CF平分∠ACG.則∠1與∠2的關(guān)系怎樣?試證明你的結(jié)論.(要求寫出推理過程和每一步的理由)

(2)若將(1)中的條件改為∠BAC=∠ACG,其它條件不變,則∠1與∠2的上述關(guān)系還成立嗎?(直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知BD平分∠ABC,∠C=62°,∠ABD=30°,∠ADC=118°,
求∠A的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,,則的度數(shù)是
A.B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖AB∥EF。說(shuō)明:∠BCF=∠B+∠F

解:經(jīng)過C畫CD∥AB
∴∠B=∠1 (               )
∵AB∥EF
而CD∥AB(畫圖)
∴CD∥EF (                     )
∴∠F=_______(                )
∴∠1+∠2=∠B+∠F(                )
即∠BCF=∠B+∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,OB,OC是∠AOD的任意兩條射線,OM平分∠AOB,ON平分∠COD,若∠MON=70°,∠BOC=30°,求∠AOD的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案