如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若P,Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的是【    】

A.AE=6cm                      B.

C.當(dāng)0<t≤10時(shí),      D.當(dāng)t=12s時(shí),△PBQ是等腰三角形

 

【答案】

D。

【解析】(1)結(jié)論A正確,理由如下:

解析函數(shù)圖象可知,BC=10cm,ED=4cm,

故AE=AD﹣ED=BC﹣ED=10﹣4=6cm。

(2)結(jié)論B正確,理由如下:

如圖,連接EC,過點(diǎn)E作EF⊥BC于點(diǎn)F,

由函數(shù)圖象可知,BC=BE=10cm,

∴EF=8!。

(3)結(jié)論C正確,理由如下:

如圖,過點(diǎn)P作PG⊥BQ于點(diǎn)G,

∵BQ=BP=t,∴

(4)結(jié)論D錯(cuò)誤,理由如下:

當(dāng)t=12s時(shí),點(diǎn)Q與點(diǎn)C重合,點(diǎn)P運(yùn)動(dòng)到ED的中點(diǎn),

設(shè)為N,如圖,連接NB,NC。

此時(shí)AN=8,ND=2,由勾股定理求得:NB=,NC=。

∵BC=10,

∴△BCN不是等腰三角形,即此時(shí)△PBQ不是等腰三角形。

故選D。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為矩形,AB=3,AD=2,四邊形DEFG也是矩形,且2ED=3EF,則△ACF的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),BE=BC,EF平分∠AEB交AB于點(diǎn)F,連FC.
(1)求證:EF⊥EC;
(2)
AB
BC
=
EC
FC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•洪山區(qū)模擬)如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F、N,CM平分∠ACB交BN于M,下列結(jié)論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC
其中正確的結(jié)論有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為
1:1
1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,四邊形ABOC為矩形,AB=4,AC=6,一次函數(shù)經(jīng)過B點(diǎn)與反比例函數(shù)交于D點(diǎn),與x軸交于E點(diǎn),且D為AC的中點(diǎn).
①求點(diǎn)D和點(diǎn)E的坐標(biāo);
②求一次函數(shù)和反比例函數(shù)的解析式;
③在x軸上是否存在點(diǎn)P,使△PBD的周長(zhǎng)最。咳舸嬖冢蟪鳇c(diǎn)P的坐標(biāo)和△PBD的周長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案