【題目】數(shù)軸上A、B兩點對應的數(shù)分別是﹣4、12,線段CE在數(shù)軸上運動,點C在點E的左邊,且CE=8,點F是AE的中點.
(1)如圖1,當線段CE運動到點C、E均在A、B之間時,若CF=1,則AB= ,AC= ,BE= ;
(2)當線段CE運動到點A在C、E之間時,
①設AF長為,用含的代數(shù)式表示BE= (結果需化簡);
②求BE與CF的數(shù)量關系;
(3)當點C運動到數(shù)軸上表示數(shù)﹣14的位置時,動點P從點E出發(fā),以每秒3個單位長度的速度向右運動,抵達B后,立即以原來一半速度返回,同時點Q從A出發(fā),以每秒2個單位長度的速度向終點B運動,設它們運動的時間為t秒(t≤8),求t為何值時,P、Q兩點間的距離為1個單位長度.
【答案】(1)16,6,2;(2)①②;(3)t=1或3或或
【解析】
(1)由數(shù)軸上A、B兩點對應的數(shù)分別是-4、12,可得AB的長;由CE=8,CF=1,可得EF的長,由點F是AE的中點,可得AF的長,用AB的長減去2倍的EF的長即為BE的長;
(2)設AF=FE=x,則CF=8-x,用含x的式子表示出BE,即可得出答案
(3)分①當0<t≤6時; ②當6<t≤8時,兩種情況討論計算即可得解
(1)數(shù)軸上A、B兩點對應的數(shù)分別是-4、12,
∴AB=16,
∵CE=8,CF=1,∴EF=7,
∵點F是AE的中點,∴AF=EF=7,
,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,
故答案為16,6,2;
(2)∵點F是AE的中點,∴AF=EF,
設AF=EF=x,∴CF=8﹣x,
∴BE=16﹣2x=2(8﹣x),
∴BE=2CF.
故答案為①②;
(3) ①當0<t≤6時,P對應數(shù):-6+3t,Q對應數(shù)-4+2t,
,
解得:t=1或3;
②當6<t≤8時,P對應數(shù) , Q對應數(shù)-4+2t,
,
解得:或;
故答案為t=1或3或或.
科目:初中數(shù)學 來源: 題型:
【題目】一輛超市配送車從倉庫O出發(fā),向東走了4.5km到達超市A,繼續(xù)走0.5km到達超市B,然后向西走9.5km到達超市C,最后回到倉庫O.解答下列問題:
(1)以倉庫O為原點,以向東為正方向,用1個單位長度表示1km,在所給的直線上畫出數(shù)軸,并在數(shù)軸上表示出A、B、C的位置.
(2)結合數(shù)軸計算:超市C在超市A的什么方向,距超市A多遠?
(3)若該配送車每千米耗油0.1升,在這次送貨回倉過程中共耗油多少升?
解:(1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,四邊形ABDC是正方形,以A為頂點,作等腰直角三角形△AEF,∠EAF=90°,線段BE與CF之間的數(shù)量關系為:_____.(直接寫出結果,不需要證明)
(2)如圖②,四邊形ABDC是菱形,以A為頂點,作等腰三角形△AEF,AE=AF,∠BAC=∠EAF,(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.
(3)如圖③,四邊形ABDC是矩形,以A為頂點,作直角三角形△AEF,∠EAF=90°,AB=AC,AE=AF,當∠EAB=60°時,延長BE交CF于點G.
①求證:BE⊥CF;
②當AB=12,AE=4時,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師為了解學生完成數(shù)學課前預習的具體情況,對部分學生進行了跟蹤調(diào)查,并將調(diào)查結果分為四類,A:很好;B:較好;C:一般;D:較差.制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)C類中女生有___名,D類中男生有___名,將下面條形統(tǒng)計圖補充完整;
(2)若該校九年級共有女生180名,則九年級女生完成數(shù)學作業(yè)達到很好和較好的大約多少人?
(3)為了共同進步,張老師想從被調(diào)查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,A(a,0)、B(0,b)、C(﹣a,0),且+b2﹣4b+4=0
(1)求證:∠ABC=90°;
(2)作∠ABO的平分線交x軸于一點D,求D點的坐標;
(3)如圖2所示,A、B兩點在x軸、y軸上的位置不變,在線段AB上有兩動點M、N,滿足∠MON=45°,下列結論:①BM+AN=MN;②BM2+AN2=MN2,其中有且只有一個結論成立.請你判斷哪一個結論成立,并證明成立的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下面三行數(shù)
3,9,27,81…①
1,3,9,27…②
2,10,26,82…③
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②③行數(shù)與第①行數(shù)分別有什么關系?
(3)設x,y,z分別為第①②③ 行的2019個數(shù),求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=6,∠BAC=108°,點D在邊BC上,∠BAD=36°.
(1)求證:△BAD∽△BCA;
(2)求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉動的支點,點E是欄桿兩段的聯(lián)結點當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示欄桿寬度忽略不計,其中米,那么適合該地下車庫的車輛限高標志牌為
(參考數(shù)據(jù):
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com