【題目】菱形 ABCD 的對角線 AC=4,BD=2,以 AC 為邊作正方形 ACEF,則 BF 的長為_____

【答案】

【解析】

作出圖形,根據(jù)菱形的對角線互相垂直平分求出AO、BO,然后分正方形在AC的兩邊兩種情況補成以BF為斜邊的RtBKF,然后求出BKFK,再利用勾股定理列式計算即可得解.

解∵AC=4,BD=2

AO=2,BO=1,

如圖1,正方形ACEFAC的左邊時,過點BBKAFFAK,

BK=AO=2,FK=AF-AK=3,

RtBFK中,BF==

如圖,正方形ACEFAC的右邊時,過點BBKAFFA的延長線于K

BK=AO=2,FK=AF+AK=5,

RtBFK中,BF==,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OAOC分別與坐標(biāo)軸重合,并且點B的坐標(biāo)為.將該矩形沿OB折疊,使得點A落在點E處,OEBC的交點為D

1)求證:為等腰三角形;

2)求點E的坐標(biāo);

3)坐標(biāo)平面內(nèi)是否存在一點F,使得以點B,E,FO為頂點的四邊形是平行四邊形,若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2018次運動后,動點P的坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,點M、N分別是AB、CD上兩點,點GAB、CD之間,連接MG、NG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點PCD下方一點,MG平分∠BMP,ND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點EAB上方一點,連接EMEN,且GM的延長線MF平分∠AMENE平分∠CNG,2MEN+∠MGN105°,求∠AME的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Aa,0),Bb,0),C(﹣12),且|2ab+8|+(a+b220

1)求ab的值;

2)如圖1,點Gy軸上,三角形COG的面積是三角形ABC的面積的,求出點G的坐標(biāo);

3)如圖2,過點CCDy軸交y軸于點D,點P為線段CD延長線上的一個動點,連接OP、ACDB,OE平分∠AOPOFCE,若∠OPD+kDOFk(∠FOP+∠AOE),現(xiàn)將四邊形ABDC向下平移k個單位得到四邊形A1B1D1C1,已知AM+BN =k,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與拋物線交于AB兩點,點Ax軸上,點B的橫坐標(biāo)為-8

1)求該拋物線的解析式;

2)點P是直線AB上方的拋物線上一動點(不與點AB重合),過點Px軸的垂線,垂足為C,交直線AB于點D,作PEAB于點E

設(shè)PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;

連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點FG恰好落在y軸上時,求出對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x4x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點Px軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點Px軸的垂線l交拋物線于點Q

1)求點AB,C的坐標(biāo).

2)當(dāng)點P在線段OB上運動時,直線l分別交BDBC于點M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.

3)當(dāng)點P在線段EB上運動時,是否存在點Q,使BDQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標(biāo)C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A、B的坐標(biāo)分別為(6,0),(6,8).動點M、N分別從O、B同時出發(fā),以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NPBC,交AC于P,連接MP.已知動點運動了x秒.

(1)P點的坐標(biāo)為多少;(用含x的代數(shù)式表示)

(2)試求MPA面積的最大值,并求此時x的值;

(3)請你探索:當(dāng)x為何值時,MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

同步練習(xí)冊答案