分析 根據(jù)平行的性質(zhì)求得內(nèi)錯角相等,已知對頂角相等,又知E是DF的中點,所以根據(jù)ASA得出△ADE≌△CFE,從而得出AD=CF,已知AB,CF的長,那么BD的長就不難求出.
解答 解:∵AB∥FC,
∴∠ADE=∠EFC,
∵E是DF的中點,
∴DE=EF,
在△ADE與△CFE中,
$\left\{\begin{array}{l}{∠ADE=∠EFC}\\{DE=EF}\\{∠AED=∠CEF}\end{array}\right.$,
∴△ADE≌△CFE,
∴AD=CF,
∵AB=20,CF=15,
∴BD=AB-AD=20-15=5.
故答案為:5.
點評 本題主要考查全等三角形的判定和性質(zhì),平行線的性質(zhì),解題的關(guān)鍵在于求證△ADE≌△CFE.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 有兩個相等的實數(shù)根 | B. | 沒有實根 | ||
C. | 只有一個實數(shù)根 | D. | 有兩個不相等的實數(shù)根 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | △CAE∽△BDA | B. | $\frac{AD}{AE}=\frac{AC}{BD}$ | C. | BD•CE=4 | D. | BE=$\sqrt{2}$BF |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com