分析:(1)根據(jù)勾股定理求出AB,根據(jù)D為AB中點(diǎn),求出AD,根據(jù)點(diǎn)P在AD上的速度,即可求出點(diǎn)P在AD段的運(yùn)動(dòng)時(shí)間,再求出點(diǎn)P在DP段的運(yùn)動(dòng)時(shí)間,最后根據(jù)DE段運(yùn)動(dòng)速度為1cm/s,即可求出DP;
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),分兩種情況討論:①點(diǎn)D與點(diǎn)N重合,P位于線段DE上,求出DP=DM=2,再根據(jù)DP=t-2,得出t-2=2,
②點(diǎn)P位于線段EB上,求出PC=t-4,根據(jù)PN∥AC,求出PN=16-2t,根據(jù)PN=PC,得16-2t=t-4,求出t即可;
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),有兩種情況,①當(dāng)2<t<4時(shí),求出DP=t-2,PQ=2,AQ=2+t,AM,根據(jù)MN∥BC,求出FM=
t,
再根據(jù)S=S
梯形AQPD-S
△AMF=
(DP+AQ)•PQ-
AM•FM代入計(jì)算即可;
②當(dāng)
<t<8時(shí),求出PC=t-4,AM=12-t,F(xiàn)M=6-
t,PG=16-2t,再根據(jù)S=S
梯形AQPG-S
△AMF=
(PG+AC)•PC-
AM•FM代入計(jì)算即可;
(4)當(dāng)點(diǎn)P在線段AD上時(shí),∠DPQ為鈍角,此時(shí)只有PD=PQ,根據(jù)△APQ∽△ABC,求出PQ=t,再根據(jù)DP=DA-AP求出DP=2
-
t,得出t=2
-
t;當(dāng)點(diǎn)P在線段AD上時(shí),∠DPQ為直角,此時(shí)只有PD=PQ,根據(jù)PD=t-2,PQ=2,得出t-2=2;當(dāng)點(diǎn)P在線段EB上時(shí),此時(shí)Q、C重合;當(dāng)DP=DQ時(shí),此時(shí)Q、C重合,則t=8;當(dāng)PC=PD時(shí),PC
2=PD
2,得出(t-4)
2=4
2+(t-6)
2,當(dāng)CD=CP時(shí),得出2
=t-4,再分別求解即可.
解答:解:(1)∵在Rt△ABC中,AC=8cm,BC=4cm,
∴AB=
=
=4
,
D為AB中點(diǎn),∴AD=2
,
∴點(diǎn)P在AD段的運(yùn)動(dòng)時(shí)間為
=2s.
如圖(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),DP段的運(yùn)動(dòng)時(shí)間為(t-2)s,
∵DE段運(yùn)動(dòng)速度為1cm/s,
∴DP=(t-2)cm,
故答案為:2,(t-2)cm;
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),有兩種情況,如下圖所示:
①如圖(2)a,此時(shí)點(diǎn)D與點(diǎn)N重合,P位于線段DE上.
由三角形中位線定理可知,DM=
BC=2,
∴DP=DM=2.
由(1)知,DP=t-2,
∴t-2=2,
∴t=4;
②如圖(2)b,此時(shí)點(diǎn)P位于線段EB上.
∵DE=
AC,AC=8cm,
∴點(diǎn)P在DE段的運(yùn)動(dòng)時(shí)間為4s,
∴PE=t-6,
∴PB=BE-PE=8-t,PC=PE+CE=t-4.
∵PN∥AC,
∴PN:PB=AC:BC=2,
∴PN=2PB=16-2t.
由PN=PC,得16-2t=t-4,解得t=
,
所以,當(dāng)點(diǎn)N落在AB邊上時(shí),t=4或t=
;
故答案為:t=4或t=
;
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),有兩種情況,如下圖所示:
①當(dāng)2<t<4時(shí),如圖(3)a所示.
DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t.
∵M(jìn)N∥BC,
∴FM:AM=BC:AC=1:2,
∴FM=
AM=
t,
S=S
梯形AQPD-S
△AMF=
(DP+AQ)•PQ-
AM•FM=
[(t-2)+(2+t)]×2-
t•
t=-
t
2+2t;
②當(dāng)
<t<8時(shí),如圖(3)b所示.
PE=t-6,
∴PC=CM=PE+CE=t-4,AM=AC-CM=12-t,PB=BE-PE=8-t,
∴FM=
AM=6-
t,PG=2PB=16-2t,
S=S
梯形AQPG-S
△AMF=
(PG+AC)•PC-
AM•FM=
[(16-2t)+8]×(t-4)-
(12-t)•(6-
t)=-
t
2+22t-84.
∴綜上所述,S與t的關(guān)系式為:S=
| -t2+2t(2<t<4) | -t2+22t-84(<t<8) |
| |
.
(4)當(dāng)點(diǎn)P在線段AD上時(shí),∠DPQ為鈍角,此時(shí)只有PD=PQ,
∵△APQ∽△ABC,
∴
=
,
∴
=
,
∴PQ=t,
∵DP=DA-AP=2
-
t,
∴t=2
-
t,
t=
<2,符合題意;
當(dāng)點(diǎn)P在線段AD上時(shí),∠DPQ為直角,此時(shí)只有PD=PQ,
∵PD=t-2,PQ=2,
∴t-2=2,
t=4;
當(dāng)點(diǎn)P在線段EB上時(shí),此時(shí)Q、C重合,
當(dāng)DP=DQ時(shí),此時(shí)Q、C重合,則t=8;
當(dāng)PC=PD時(shí),PC
2=PD
2,(t-4)
2=4
2+(t-6)
2,
t=9>8,不合題意舍去,
當(dāng)CD=CP時(shí),2
=t-4,t=4+2
>8,不合題意舍去.
答:當(dāng)t=
,4,8時(shí),△DPQ為等腰三角形.