【題目】如圖,在平面直角坐標(biāo)系中,直線上一點(diǎn),為軸上一點(diǎn),連接,線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至線段,過(guò)點(diǎn)作直線軸,垂足為,直線與直線交于點(diǎn),且,連接,直線與直線交于點(diǎn),則點(diǎn)的坐標(biāo)為(______)
【答案】(,).
【解析】
過(guò)E作MN⊥y軸,交y軸于M,交AB于N,過(guò)D作DH⊥y軸,交y軸于H,∠CME=∠DNE=∠CED=90°,求出∠MCE=∠DEN,證△MCE≌△NED,推出DN=EM,EN=CM,設(shè)AD=a,求出DN=2a1,得出2a1=1,求出a=1,得出D的坐標(biāo),在Rt△DNE中,由勾股定理求出EC=ED=,在Rt△MCE中,由勾股定理求出CM=2,得出C的坐標(biāo),設(shè)直線CD的解析式是y=kx+3,把D(-3,2)代入求出直線CD的解析式,解由兩函數(shù)解析式組成的方程組,求出方程組的解即可.
解:過(guò)E作MN⊥y軸,交y軸于M,交AB于N,過(guò)D作DH⊥y軸,交y軸于H,
∠CME=∠DNE=∠CED=90°,
∴∠MCE+∠CEM=90°,∠MEC+∠DEN=90°,
∴∠MCE=∠DEN,
∵E(-1,1),
∴OM=BN=1,EM=1,
在△MCE和△NED中,
∴△MCE≌△NED(AAS),
∴DN=EM,EN=CM,
∵BD=2AD,
∴設(shè)AD=a,BD=2a,
∵E(1,1),
∴BN=2a1,
則2a1=1,
a=1,即BD=2.
∵直線y=-x,
∴AB=OB=3,
在Rt△DNE中,由勾股定理得:EC=ED=,
在Rt△MCE中,由勾股定理得:CM=
則C的坐標(biāo)是(0,3),
設(shè)直線CD的解析式是y=kx+3,
把D(-3,2)代入得:k=,
即直線CD的解析式是y=x+3,
即方程組
得:
即F的坐標(biāo)是(,).
故答案為:(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱,則稱點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn).
(1)如圖1,點(diǎn).
①若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則點(diǎn)的坐標(biāo)為_(kāi)_______;
②若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則的值為_(kāi)______;
③若點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),則直線的表達(dá)式為_(kāi)_________;
(2)如圖2,的半徑為1.若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直績(jī):的二次對(duì)稱點(diǎn),且點(diǎn)在射線上,的取值范圍是________;
(3)是軸上的動(dòng)點(diǎn),的半徑為2,若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),且點(diǎn)在軸上,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“長(zhǎng)跑”是中考體育考試項(xiàng)目之一.某中學(xué)為了解九年級(jí)學(xué)生“長(zhǎng)跑”的情況,隨機(jī)抽取部分九年級(jí)學(xué)生,測(cè)試其長(zhǎng)跑成績(jī)(男子1000米,女子800米),按長(zhǎng)跑的時(shí)間的長(zhǎng)短依次分為A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在這次調(diào)查中共抽取了 名學(xué)生,扇形統(tǒng)計(jì)圖中,D類(lèi)所對(duì)應(yīng)的扇形圓心角大小為 ;
(2)所抽取學(xué)生“長(zhǎng)跑”測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(3)若該校九年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)該校C等級(jí)的學(xué)生約在多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新冠病毒”防控期間,某益康醫(yī)療器械公司分兩次購(gòu)進(jìn)酒精消毒液與測(cè)溫槍兩種商品進(jìn)行銷(xiāo)售,兩次購(gòu)進(jìn)同一商品的進(jìn)價(jià)相同,具體情況如下表所示:
項(xiàng)目 | 購(gòu)進(jìn)數(shù)量(件) | 購(gòu)進(jìn)所需費(fèi)用(元) | |
酒精消毒液 | 測(cè)溫槍 | ||
第一次 | 30 | 40 | 8300 |
第二次 | 40 | 30 | 6400 |
(1)求酒精消毒液和測(cè)溫槍兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)公司決定酒精消毒液以每件20元出售,測(cè)溫槍以每件240元出售.為滿足市場(chǎng)需求,需購(gòu)進(jìn)這兩種商品共1000件,且酒精消毒液的數(shù)量不少于測(cè)溫槍數(shù)量的4倍,求該公司銷(xiāo)售完上述1000件商品獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,依次連接第一個(gè)矩形各邊的中點(diǎn)得到一個(gè)菱形,再依次連接菱形各邊的中點(diǎn)得到第二個(gè)矩形,按照此方法繼續(xù)下去.已知第一個(gè)矩形的兩條鄰邊長(zhǎng)分別為6和8,則第n個(gè)菱形的周長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)E為射線CB上一動(dòng)點(diǎn)(不與點(diǎn)C重合),將△CDE沿DE所在直線折疊,點(diǎn)C落在點(diǎn)C′處,連接AC′,當(dāng)△AC′D為直角三角形時(shí),CE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)和矩形的邊都在直線上,以點(diǎn)為圓心,以24為半徑作半圓,分別交直線于兩點(diǎn).已知: ,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過(guò)程中,設(shè)矩形對(duì)角線與半圓的交點(diǎn)為 (點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).
(1)如圖2,若與半圓相切,求的值;
(2)如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;
(3)若線段的長(zhǎng)為20,直接寫(xiě)出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘漁船以60海里每小時(shí)的速度向正東方向航行.在A處測(cè)得燈塔C在北偏東60°方向上;繼續(xù)航行1小時(shí)到達(dá)B處,此時(shí)測(cè)得燈塔C在北偏東30°方向上.已知在燈塔C周?chē)?/span>50海里范圍內(nèi)有暗礁,問(wèn)這艘漁船繼續(xù)向東航行有無(wú)觸礁的危險(xiǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com