【題目】已知下列命題:
①若a>b,則c﹣a<c﹣b;
②若a>0,則=a;
③對角線互相平分且相等的四邊形是菱形;
④如果兩條弧相等,那么它們所對的圓心角相等.
其中原命題與逆命題均為真命題的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】D
【解析】
試題根據(jù)不等式的性質(zhì),二次根式的性質(zhì),矩形的判定,圓周角定理分別作出判斷
①若a>b,則c﹣a<c﹣b;逆命題為:若c﹣a<c﹣b,則a>b。原命題與逆命題都是真命題。
②若a>0,則;逆命題:若,則a>0,是假命題。故此選項(xiàng)錯(cuò)誤。
③對角線互相平分且相等的四邊形是矩形;原命題是假命題,故此選項(xiàng)錯(cuò)誤。
④如果兩條弧相等,那么它們所對的圓心角相等;逆命題為:相等的圓心角所對的弧相等,是假命題。故此選項(xiàng)錯(cuò)誤。
故原命題與逆命題均為真命題的個(gè)數(shù)是1個(gè)。
故選D。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△是等邊三角形,為的中點(diǎn),,垂足為點(diǎn),∥,,下列結(jié)論錯(cuò)誤的是( )
A.30°B.
C.△的周長為10D.△的周長為9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C.
(1)求證:AB//MN.
(2)若∠C=40°,∠MND=100°,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,D為BC延長線上的一點(diǎn),CE平分∠ACD,CE=BD,求證:△ADE為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在探究平行線的判定——基本事實(shí):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行時(shí),老師布置了這樣的任務(wù):
請同學(xué)們分組在學(xué)案上(如圖),用直尺和三角尺畫出過點(diǎn)P與直線AB平行的直線PQ;并思考直尺和三角尺在畫圖過程中所起的作用.
小菲和小明所在的小組是這樣做的:他們選取直尺和含有45°角的三角尺,用平移三角尺的畫圖方法畫出AB的平行線PQ,并將實(shí)際畫圖過程抽象出平面幾何圖形(如圖).
以下是小菲和小明所在小組關(guān)于直尺和三角尺作用的討論:
①在畫平行線的過程中,三角尺由初始位置靠著直尺平移到終止位置,實(shí)際上就是先畫∠BMD=45°,再過點(diǎn)P畫∠BMD=45°
②由初始位置的三角尺和終止位置的三角尺各邊所在直線構(gòu)成一個(gè)“三線八角圖”,其中QP為截線
③初始位置的三角尺和終止位置的三角尺在“三線八角圖”中構(gòu)成一組同位角
④在畫圖過程中,直尺可以由直線CD代替
⑤在“三線八角圖”中,因?yàn)?/span>AB和CD是截線,所以,可以下結(jié)論“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”
其中,正確的是( )
A.①②⑤B.①③④C.②④⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南江縣在“創(chuàng)國家級衛(wèi)生城市”中,朝陽社區(qū)計(jì)劃對某區(qū)域進(jìn)行綠化,經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.求甲、乙兩工程隊(duì)每天能完成綠化的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0).
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)D(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PB+PD最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com