分析 (1)若一元二次方程有兩實(shí)數(shù)根,則根的判別式△=b2-4ac≥0,建立關(guān)于m的不等式,求出m的取值范圍;
(2)由根與系數(shù)的關(guān)系可以得到x1•x2=-m=2m2-1,據(jù)此即可求得m的值.
解答 解:(1)∵關(guān)于x的一元二次方程x2-2x-m=0有兩個(gè)實(shí)數(shù)根,
∴b2-4ac=4+4m≥0,
解得m≥-1;
(2)由根與系數(shù)的關(guān)系可知:x1•x2=-m,
∵x1•x2=2m2-1,
∴-m=2m2-1,
整理得:2m2+m-1=0,
解得:m=$\frac{1}{2}$或m=-1.
∵$\frac{1}{2}$,-1都在(1)所求m的取值范圍內(nèi),
∴所求m的值為$\frac{1}{2}$或-1.
點(diǎn)評(píng) 本題考查了一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:
①當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;
②當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;
③當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.
也考查了根與系數(shù)的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 50° | B. | 40° | C. | 30° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a-b | B. | -3a | C. | $\frac{a+b}{3}$ | D. | $\frac{a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 2 | -1 | -2 | m | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{8}$ | B. | $\sqrt{{m}^{5}}$ | C. | $\sqrt{\frac{1}{2}}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -a | B. | |a| | C. | |a|-1 | D. | a+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{4{1}^{2}-4{0}^{2}}$=$\sqrt{41+40}$•$\sqrt{41-40}$=9 | B. | $\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{{2}^{2}}$$+\sqrt{{3}^{2}}$=5 | ||
C. | $\sqrt{(-4)×(-9)}$=$\sqrt{-4}$•$\sqrt{-9}$=6 | D. | $\sqrt{4{a}^{2}b}$=2ab |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com