【題目】如圖,在RtDEF中,∠EFD90°,∠DEF30°,EF3cm,邊長為2cm的等邊△ABC的頂點(diǎn)C與點(diǎn)E重合,另一個(gè)頂點(diǎn)B(在點(diǎn)C的左側(cè))在射線FE上.將△ABC沿EF方向進(jìn)行平移,直到A、DF在同一條直線上時(shí)停止,設(shè)△ABC在平移過程中與△DEF的重疊面積為ycm2CE的長為xcm,則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A.B.

C.D.

【答案】A

【解析】

0x2、2x33x4三種情況,分別求出函數(shù)表達(dá)式即可求解.

解:當(dāng)0x2時(shí),如圖1,

設(shè)ACED于點(diǎn)H,則ECx,

∵∠ACB60°,∠DEF30°,

∴∠EHC90°,

ySEHC×EH×HCECsinACB×EC×cosACBCE2x2,

該函數(shù)為開口向上的拋物線,當(dāng)x2時(shí),y;

當(dāng)2x3時(shí),如圖2,

設(shè)ACDE于點(diǎn)HABDE于點(diǎn)G,

同理△AHG為以∠AHG為直角的直角三角形,

ECx,EBx2BG,則AG2BG2﹣(x2)=4x,

邊長為2的等邊三角形的面積為:2×;

同理SAHG4x2,

yS四邊形BCHGSABCSAHGx42,

函數(shù)為開口向下的拋物線,當(dāng)x3時(shí),y,

當(dāng)3x4時(shí),如圖3,

同理可得:y[4x2+x32]=﹣x2+4x,

函數(shù)為開口向下的拋物線,當(dāng)x4時(shí),y;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點(diǎn),則∠OAB大小的變化趨勢為( )

A.逐漸變小B.逐漸變大C.時(shí)大時(shí)小D.保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為的網(wǎng)格中,△的頂點(diǎn),,均在格點(diǎn)上.

1的長等于_____________;

2)在如圖所示的網(wǎng)格中,將△繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)的對應(yīng)點(diǎn)落在邊上,得到△,請用無刻度的直尺,畫出△,并簡要說明這個(gè)三角形的各個(gè)頂點(diǎn)是如何找到的(不要求證明)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購買若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格也相同).若購買個(gè)籃球和個(gè)足球共需元,購買個(gè)籃球和個(gè)足球共需元.

1)購買一個(gè)籃球、一個(gè)足球各需多少元?

2)根據(jù)該中學(xué)的實(shí)際情況,需從體育用品商店一次性購買籃球和足球共個(gè).要求購買總金額不能超過元,則最多能購買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新學(xué)期復(fù)學(xué)后,學(xué)校為了保障學(xué)生的出行安全,隨機(jī)調(diào)查了部分學(xué)生的上學(xué)方式(每位學(xué)生從乘私家車、坐公交、騎車和步行4種方式中限選1項(xiàng)),根據(jù)調(diào)查數(shù)據(jù)制作了如圖所示的不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

(1)本次學(xué)校共調(diào)查了 名學(xué)生, , ;

(2)求扇形統(tǒng)計(jì)圖中步行對應(yīng)扇形的圓心角;

(3)甲、乙兩位同學(xué)住在同一小區(qū),且都坐公交車上學(xué),有、三路公交車途徑該小區(qū)和學(xué)校,假設(shè)甲、乙兩位同學(xué)坐這三路公交車是等可能的,請用列表或畫樹狀圖的方法求某日甲、乙兩位同學(xué)坐同一路公交車到學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+c+1x軸于點(diǎn)Aa,0)和Bb0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)命題:

①拋物線的對稱軸是直線x1;

②若OCOB,則c2;

③若Mx0,y0)是x軸上方拋物線上一點(diǎn),則(x0a)(x0b)<0;

④拋物線上有兩點(diǎn)Px1,y1)和Qx2y2),若x11x2,且x1+x22,則y1y2.其中真命題個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG,CF.下列結(jié)論:點(diǎn)GBC中點(diǎn);②FG=FC;

其中正確的是

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一種正方形的紙片沿著過一邊中點(diǎn)的虛線剪成形狀分別為三角形和梯形的兩部分,利用這兩部分不能拼成的圖形是(  )

A.直角三角形B.平行四邊形C.菱形D.等腰梯形

查看答案和解析>>

同步練習(xí)冊答案