【題目】如圖,直線,分別相切于點(diǎn)和點(diǎn).點(diǎn)和點(diǎn)分別是上的動(dòng)點(diǎn),沿平移.的半徑為,.下列結(jié)論錯(cuò)誤的是(

A. B. 的距離為

C. ,則相切 D. 相切,則

【答案】D

【解析】

首先過點(diǎn)NNCAM于點(diǎn)C,直線l1l2,Ol1l2分別相切于點(diǎn)A和點(diǎn)B,O的半徑為1,易求得MN==,l1l2的距離為2;若∠MON=90°,連接NO并延長(zhǎng)交MA于點(diǎn)C,易證得CO=NO,繼而可得即OMN的距離等于半徑,可證得MN與⊙O相切;由題意可求得若MN與⊙O相切,則AM=

如圖1,過點(diǎn)NNCAM于點(diǎn)C,

∵直線l1l2,Ol1l2分別相切于點(diǎn)A和點(diǎn)B,O的半徑為1,

CN=AB=2,

∵∠1=60°,

MN==,

AB正確;

如圖2,

若∠MON=90°,連接NO并延長(zhǎng)交MA于點(diǎn)C,則AOC≌△BON,

CO=NO,MON≌△MOM′,故MN上的高為1,即OMN的距離等于半徑.

C正確;

如圖3,

MN是切線,⊙Ol1l2分別相切于點(diǎn)A和點(diǎn)B,

∴∠AMO=1=30°,

AM=;

∵∠AM′O=60°,

AM′=,

∴若MN與⊙O相切,則AM=;

D錯(cuò)誤.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面內(nèi),,,.

1)求證:;

2)當(dāng)時(shí),取的中點(diǎn)分別為,連接,如圖2,判斷的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(模型建立)

如圖1,等腰直角三角形中,,直線經(jīng)過點(diǎn),過于點(diǎn),過于點(diǎn).

求證:;

(模型應(yīng)用)

①已知直線軸交于點(diǎn),與軸交于點(diǎn),將直線繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)至直線,如圖2,求直線的函數(shù)表達(dá)式;

②如圖3,在平面直角坐標(biāo)系中,點(diǎn),作軸于點(diǎn),作軸于點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),點(diǎn)是直線上的動(dòng)點(diǎn)且在第一象限內(nèi).問點(diǎn)、能否構(gòu)成以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)直接寫出此時(shí)點(diǎn)的坐標(biāo),若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課外興趣小組活動(dòng)時(shí),老師提出了如下問題:

如圖,在中,若,求邊上的中線的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長(zhǎng),使得,再連接(或?qū)?/span>繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到),把、、集中在中,利用三角形的三邊關(guān)系可得,則

[感悟]解題時(shí),條件中若出現(xiàn)中點(diǎn)”“中線字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.

解決問題:受到的啟發(fā),請(qǐng)你證明下列命題:如圖,在中,邊上的中點(diǎn),于點(diǎn),于點(diǎn),連接.求證:,若,探索線段、之間的等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,于點(diǎn),點(diǎn)中點(diǎn),連接于點(diǎn),且,過點(diǎn),交于點(diǎn).

1)求的大;

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了“等邊三角形”后,激發(fā)了他的學(xué)習(xí)和探究的興趣,就想考考他的朋友小崔,小明作了一個(gè)等邊,如圖1,并在邊上任意取了一點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),過點(diǎn)于點(diǎn),延長(zhǎng),使得,連接于點(diǎn).

1)若,求的長(zhǎng)度;

2)如圖2,延長(zhǎng),再延長(zhǎng),使得,連接,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張背面完全相同的紙牌、,其中正面分別畫有四個(gè)不同的幾何圖形(如圖),小華將這張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用、、、表示);

求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長(zhǎng)線上取一點(diǎn)P,AP為直角邊,點(diǎn)P為直角頂點(diǎn),在射線CB上方作等腰 Rt, 過點(diǎn)DDECB,垂足為點(diǎn)E

1 依題意補(bǔ)全圖形;

2 求證: AC=PE

3 連接DB,并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F,用等式表示線段CFAC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案