【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到,△EFG△ABC沿CB方向平移得到,且直線EF過(guò)點(diǎn)D.

(1)求證:AD⊥EF;

(2)CG的長(zhǎng).

【答案】(1)證明見解析;(2)CG= 12.5.

【解析】

(1)由平移的性質(zhì)可知:ABDF,再利用平行線的性質(zhì)即可證明;

(2)先判斷出∠ADE=ACB,進(jìn)而得出ADE∽△ACB,得出比例式求出AE,即可得出結(jié)論.

(1)∵線段AD是由線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到,

∴∠DAB=90°,

∵△EFGABC沿CB方向平移得到,

ABEF,

∴∠ADF+DAB=180°,

∴∠ADF=90°,

ADEF;

(2)由平移的性質(zhì)得,AECG,ABEF,

∴∠DEA=DFC=ABC,ADE+DAB=180°,

∵∠DAB=90°,

∴∠ADE=90°,

∵∠ACB=90°,

∴∠ADE=ACB,

∴△ADE∽△ACB,

=

AC=8,AB=AD=10,

AE=12.5,

由平移的性質(zhì)得,CG=AE=12.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,邊長(zhǎng)為2的等邊三角形的頂點(diǎn),分別在上,則正方形的面積等于_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】測(cè)量計(jì)算是日常生活中常見的問(wèn)題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測(cè)旗桿頂點(diǎn)A的仰角為50°,觀測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;

(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形ABCD繞點(diǎn)D旋轉(zhuǎn),點(diǎn)C落在BC上的點(diǎn)H處,點(diǎn)B恰好落在點(diǎn)A處,得平行四邊形DHAE,若BH=2,CH=3,則DC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC△DEF關(guān)于點(diǎn)O成中心對(duì)稱.

(1)作出它們的對(duì)稱中心O,并簡(jiǎn)要說(shuō)明作法;

(2)AB=6,AC=5,BC=4,求△DEF的周長(zhǎng);

(3)連接AF,CD,試判斷四邊形ACDF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一幢樓房AB背后有臺(tái)階CD,臺(tái)階每層高0.2,AC=17.2,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10,現(xiàn)有一只小貓睡在臺(tái)階MN上曬太陽(yáng).

(1)求樓房的高度約為多少米?(結(jié)果精確到0.1)

(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),小貓還能不能曬到太陽(yáng)?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA;

2)若AB=12BM=5,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案