【題目】如圖所示,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,經(jīng)過點的拋物線上有一動點,且點在直線的下方.
(1)平移直線經(jīng)過點,得到直線,點為直線上一個動點,連接,當(dāng)面積最大時,求的最小值.
(2)平移直線經(jīng)過原點,得到直線,點是直線上一點,且點橫坐標(biāo)為6,點在軸上,點在軸上,當(dāng)時,拋物線上是否存在點,使四邊形是矩形?如果存在,請求出點的坐標(biāo),如果不存在,請說明理由.
【答案】(1)的最小值為;(2)點的坐標(biāo)為或.
【解析】
(1)設(shè),根據(jù)列出函數(shù)關(guān)系式求出當(dāng)的面積有最大值時,,求出直線的解析式,過點作軸,易得,然后根據(jù)相似三角形的性質(zhì)得,進而可求出結(jié)論;
(2)過作軸,軸,易得且相似比為1:3.然后分點在點的左側(cè)時和點在點的右側(cè)時兩種情況求解即可.
(1)設(shè),
,
當(dāng)時,的面積有最大值.
,
平移直線得到直線,且過點,
易得直線.
過點作軸,
易得,
,
,
.
由圖知,,,
當(dāng)軸時,,重合,
此時有最小值等.
的最小值為.
(2)過作軸,軸,
直線平移后過原點得到直線,
直線,代入.
點坐標(biāo)為,,.
,
易得且相似比為1:3.
如圖乙所示,
點在點的左側(cè)時,設(shè),則.
,
.
.
四邊形為矩形,
,,
,,
,.
將點的坐標(biāo)代入拋物線的解析式得,
,
解得:,(舍去).
,
如圖丙所示:點在點的右側(cè)時,設(shè),
則.
,
.
.
四邊形為矩形,
,,
,,
,.
將點的坐標(biāo)代人拋物線的解析式得,
,
解得:(舍去)或.
.
綜上所述,
點的坐標(biāo)為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:25)能喝到不小于70℃的水,則接通電源的時間可以是當(dāng)天上午的( ).
A.7:00 B.7:10 C.7:25 D.7:35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某乒乓球館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一個坐標(biāo)系中,若三種消費方式對應(yīng)的函數(shù)圖像如圖所示,請根據(jù)函數(shù)圖像,寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點是上一點,與過點的切線垂直,垂足為點,直線與的延長線相交于點,平分,交于點.
求證:平分;
求證:是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兄弟兩人騎馬進城,全程51,馬每小時行12,但只能由一個人騎.哥哥每小時步行5,弟弟每小時步行4.兩人輪換騎馬和步行,騎馬者走過一段距離就下鞍拴馬(下鞍拴馬的時間忽略不計),然后獨自步行,而步行者到達此地,再上馬前進.若他們早上8:00出發(fā),并且同時到達城門,那么他們到達的時間是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市長途客運站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當(dāng)?shù)谝惠v車開來時,他不上車,而是仔細觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優(yōu)、中、差三等,請你思考并回答下列問題:
(1)三輛車按出現(xiàn)的先后順序共有哪幾種可能?
(2)請列表分析哪種方案乘坐優(yōu)等車的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥市教育教學(xué)研究室為了了解該市所有畢業(yè)班學(xué)生參加2019年安徽省中考一?荚嚨臄(shù)學(xué)成績情況(滿分:150分,等次:等,130分150分;等,110分129分;C等,90分109分;D等,89分及以下),從該市所有參考學(xué)生中隨機抽取部分學(xué)生進行調(diào)查,并根據(jù)調(diào)查結(jié)果制作了如下的統(tǒng)計圖表(部分信息未給出):
2019年合肥市一模數(shù)學(xué)成績頻數(shù)分布表
等次 | 頻數(shù) | 頻率 |
0.2 | ||
6 | ||
2 | 0.1 | |
合計 | 1 |
2019年合肥市一模教學(xué)成績頻數(shù)分布直方圖
根據(jù)圖表中的信息,下列說法不正確的是( )
A. 這次抽查了20名學(xué)生參加一?荚嚨臄(shù)學(xué)成績
B. 這次一?荚囍,考試數(shù)學(xué)成績?yōu)?/span>等次的頻率為0.4
C. 根據(jù)頻數(shù)分布直方圖制作的扇形統(tǒng)計圖中等次所占的圓心角為
D. 若全市有20000名學(xué)生參加中考一?荚,則估計數(shù)學(xué)成績達到等次及以上的人數(shù)有12000人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關(guān)于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.
(1)求點D的坐標(biāo).
(2)求點M的坐標(biāo)(用含a的代數(shù)式表示).
(3)當(dāng)點N在第一象限,且∠OMB=∠ONA時,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,△ABC內(nèi)接于⊙O.點D在⊙O 上,BD平分∠ABC交AC于點E,DF⊥BC交BC的延長線于點F.
(1)求證:FD是⊙O的切線;
(2)若BD=8,sin∠DBF=,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com