【題目】如圖,∠MON=α(0<α<90°),A為OM上一點(diǎn)(不與O重合),點(diǎn)A關(guān)于直線ON的對(duì)稱(chēng)點(diǎn)為B,AB與ON交于點(diǎn)C,P為直線ON上一點(diǎn)(不與O,C重合)將射線PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)β角,其中2α+β=180°,所得到的射線與直線OM交于點(diǎn)Q.這個(gè)問(wèn)題中,點(diǎn)的位置和角的大小都不確定,在這里我們僅研究?jī)煞N特殊情況,一般的情況留給同學(xué)們深入探索.
(1)如圖1,當(dāng)α=45°時(shí),此時(shí)β=90°,若點(diǎn)P在線段OC的延長(zhǎng)線上.
①依題意補(bǔ)全圖形;
②求∠PQA﹣∠PBA的值;
(2)如圖2,當(dāng)α=60°,點(diǎn)P在線段CO的延長(zhǎng)線上時(shí),用等式表示線段OC,OP,AQ之間的數(shù)量關(guān)系,并證明.
【答案】(1)①見(jiàn)解析;②45°;(2)AQ=4OC+OP,理由見(jiàn)解析.
【解析】
(1)①依據(jù)題意可得圖形;
②通過(guò)軸對(duì)稱(chēng)的性質(zhì),旋轉(zhuǎn)的性質(zhì),可求AB⊥OP,BP⊥PQ,可得∠PBA=∠OPQ,即可求∠PQA﹣∠PBA的值;
(2)在OQ上截取OD=OP,連接BO,PD,BQ,由題意可得∠BON=∠MON=∠POQ=60°,∠BPQ=β=180°﹣2α=60°,可證點(diǎn)B,點(diǎn)Q,點(diǎn)P,點(diǎn)O四點(diǎn)共圓,可得∠PBQ=∠POQ=60°,∠PBO=∠OQP,由“AAS”可證△BOP≌△QDP,可得DQ=OB=OA=2OC,即可求線段OC,OP,AQ之間的數(shù)量關(guān)系.
(1)①
②∵點(diǎn)A,點(diǎn)B關(guān)于ON對(duì)稱(chēng),∴AB⊥ON,∴∠PBA+∠BPC=90°.
∵∠BPQ=90°,∴∠BPC+∠OPQ=90°,∴∠OPQ=∠PBA.
∵∠PQA=∠O+∠OPQ,∴∠PQA=∠O+∠PBA,∴∠PQA﹣∠PBA=∠O=45°.
(2)AQ=4OC+OP.理由如下:
在OQ上截取OD=OP,連接BO,PD,BQ.
∵∠MON=α=60°,且點(diǎn)A關(guān)于直線ON的對(duì)稱(chēng)點(diǎn)為B,∴∠BON=∠MON=∠POQ=60°,AO=BO,CO⊥AB,∴∠BOQ=60°,∠CAO=30°,∴AO=2CO.
∵旋轉(zhuǎn),∴∠BPQ=β=180°﹣2α=60°,∴∠BOQ=∠BPQ=60°,∴點(diǎn)B,點(diǎn)Q,點(diǎn)P,點(diǎn)O四點(diǎn)共圓,∴∠PBQ=∠POQ=60°,∠PBO=∠OQP,∴△PBQ是等邊三角形,∴PB=PQ.
∵OD=OP,∠QOP=60°,∴△ODP是等邊三角形,∴∠ODP=∠DOP=60°,∴∠BOP=∠PDQ=120°,且BP=PQ,∠OBP=∠OQP,∴△BOP≌△QDP(AAS),∴DQ=OB,∴DQ=OA=2OC,∴AQ=AO+OQ=2CO+OD+PQ=4OC+OP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫(huà)出△AOB關(guān)于原點(diǎn)O對(duì)稱(chēng)的圖形△COD;
(2)將△AOB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△EOF,畫(huà)出△EOF;
(3)點(diǎn)D的坐標(biāo)是 ,點(diǎn)F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,AB=5,以AC為邊長(zhǎng)作正方形ACFE,則點(diǎn)D到EF的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工廠對(duì)某種新型材料進(jìn)行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內(nèi)方可加工,如圖是在這種材料的加工過(guò)程中,該材料的溫度y(℃)時(shí)間x(min)變化的數(shù)圖象,已知該材料,初始溫度為15℃,在溫度上升階段,y與x成一次函數(shù)關(guān)系,在第5分鐘溫度達(dá)到60℃后停止加溫,在溫度下降階段,y與x成反比例關(guān)系.
(1)寫(xiě)出該材料溫度上升和下降階段,y與x的函數(shù)關(guān)系式:
①上升階段:當(dāng)0≤x≤5時(shí),y= ;
②下降階段:當(dāng)x>5時(shí),y .
(2)根據(jù)工藝要求,當(dāng)材料的溫度不低于30℃,可以進(jìn)行產(chǎn)品加工,請(qǐng)問(wèn)在圖中所示的溫度變化過(guò)程中,可以進(jìn)行加工多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對(duì)稱(chēng)軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動(dòng)到什么位置時(shí),滿足S△PAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)是直線上一點(diǎn),且,則點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,點(diǎn)A,B,C,D都在這些小正方形的格點(diǎn)上,AB,CD相交于點(diǎn)E,則sin∠AEC的值為(。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(a>0)的圖象與x軸交于A、B兩點(diǎn),(A在B左側(cè),且OA<OB),與y軸交于點(diǎn)C.
(1)求C點(diǎn)坐標(biāo),并判斷b的正負(fù)性;
(2)設(shè)這個(gè)二次函數(shù)的圖像的對(duì)稱(chēng)軸與直線AC交于點(diǎn)D,已知DC:CA=1:2,直線BD與y軸交于點(diǎn)E,連接BC,
①若△BCE的面積為8,求二次函數(shù)的解析式;
②若△BCD為銳角三角形,請(qǐng)直接寫(xiě)出OA的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com