A. | 2$\sqrt{2}$-2 | B. | $\sqrt{2}$ | C. | 1 | D. | 2-$\sqrt{2}$ |
分析 連接DO,由三角形的外角與內(nèi)角的關(guān)系易得∠DOC=∠C=45°,故有∠ODC=90°,CD=OD=$\frac{1}{2}$AB,在直角△COD中,利用勾股定理即可求解.
解答 解:連接DO,
∵AO=DO,
∴∠DAO=∠ADO=22.5°.
∴∠DOC=45°.
又∵∠ACD=2∠DAB,AB=2$\sqrt{2}$,
∴∠ACD=∠DOC=45°.
∴∠ODC=90°,CD=OD=$\frac{1}{2}$AB=$\sqrt{2}$,
∴△OCD是等腰直角三角形,
∴OC=$\sqrt{{OD}^{2}+{CD}^{2}}$=$\sqrt{{(\sqrt{2})}^{2}+{(\sqrt{2})}^{2}}$=2,
∴BC=OC-OB=2-$\sqrt{2}$.
故選D.
點評 本題考查的是圓周角定理,根據(jù)題意作出輔助線,判斷出△OCD的形狀是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 360 | B. | 164 | C. | 400 | D. | 60 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com