【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.
【答案】(1)見解析;(2)6
【解析】
試題分析:(1)連接OD,OE,由AB為圓的直徑得到三角形BCD為直角三角形,再由E為斜邊BC的中點,得到DE=BE=DC,再由OB=OD,OE為公共邊,利用SSS得到三角形OBE與三角形ODE全等,由全等三角形的對應角相等得到DE與OD垂直,即可得證;
(2)在直角三角形ABC中,由∠BAC=30°,得到BC為AC的一半,根據BC=2DE求出BC的長,確定出AC的長,再由∠C=60°,DE=EC得到三角形EDC為等邊三角形,可得出DC的長,由AC﹣CD即可求出AD的長.
(1)證明:連接OD,OE,BD,
∵AB為圓O的直徑,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴DE=BE,
在△OBE和△ODE中,
,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
則DE為圓O的切線;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=CE,
∴△DEC為等邊三角形,即DC=DE=2,
則AD=AC﹣DC=6.
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學測試后,老師抽查了10名同學的成績,以80分為基準,超出的記為正數(shù),不足的記為負數(shù),記錄的結果如下:
+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)在本次測試的10名同學中最高分是多少?最低分是多少?
(2)這10名同學的總成績是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某天小明發(fā)現(xiàn)陽光下電線桿AB的影子落在土坡的坡面CD和地面BC上,量的CD=8米,BC=20米,斜坡CD的坡度比為1:,且此時測得1米桿的影長為2米,則電線桿的高度為( )
A.(14+2)米 B.28米 C.(7+)米 D.9米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次數(shù)學活動課上,老師帶領學生去測一條南北流向的河寬,如圖所示,某學生在河東岸點A處觀測到河對岸水邊有一點C,測得C在A北偏西31°的方向上,沿河岸向北前行40米到達B處,測得C在B北偏西45°的方向上,請你根據以上數(shù)據,求這條河的寬度.(參考數(shù)值:tan31°≈)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com